International ID for Author Rights and protection Intellectual Property


Why Publish Your Article in IJSURP


Public Research


Articles from over
100 Countries

Bioaccumulation of heavy metals in Channa punctatus (Bloch) in river Ramganga (U.P.), India

Authore(s) : Robeena Sarah || Toxicology LaboratoryDepartment of ZoologyGovt. Raza P.G. CollegeRampur-244901 (U.P.)India.

Volume : (13), Issue : 205, September - 2018

Abstract : Ganga is the largest riverine system of India with a fragile ecosystem. Its prone to anthropogenic disturbances because of its cultural, economic and environmental values. The contamination of river Ganga  by  heavy  metals  (HM)  is  due  to  biotic  (anthropogenic  sources)  and  abiotic (pesticides, fertilizers) sources that poses a devastating health hazard to human, plant and edible fish life. The chemical analysis with the help of atomic absorption spectrometer performed on its water samples demonstrated the accumulation of heavy metals such as Arsenic (As), Lead (Pb), Cadmium (Cd), Iron (Fe), Zinc (Zn). Moreover, the spectrophotometric analysis indicated clearly the accumulation of heavy metals in order of occurrence (Fe> As> Cd> Zn> Pb) in liver and (Zn> Fe> As> Cd> Pb) in kidney of edible fish Channa punctatus. The present study has be used to  sensitively monitor the extent  of heavy  metals pollution  in the biotic aqua  life of river Ramganga  system  and  its  suggested  that  the bioaccumulation  of  heavy  metal  in  Channa punctatus has reached above permissible limits for human consumption, indicating potential health risks.  Necessary biological steps should  be taken to  handle such  food  pollution and prevent the environmental risk and food chain disruption.

Keywords :Bioaccumulation of heavy metals; Channa punctatus; Ramganga River, India.

Article: Download PDF Journal DOI : 301/704

Cite This Article:

Channa punctatus (Bloch) in river Ramganga (U.

Vol.I (13), Issue.I 205

Article No : 10091

Number of Downloads : 104

References :
Adimalla N. and Wang H. (2018). Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arabian Journal of Geosciences,11: 684. https://doi.org/10.1007/s12517-018-4028-y Ahmad R., Kaushik H. and Ranjan R. K. (2019). Assessment of microbial communities and heavy metals in urban soils of Patna, Bihar (India). Arabian Journal of Geosciences, 12:... More
  1. Adimalla N. and Wang H. (2018). Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arabian Journal of Geosciences,11: 684. https://doi.org/10.1007/s12517-018-4028-y
  2. Ahmad R., Kaushik H. and Ranjan R. K. (2019). Assessment of microbial communities and heavy metals in urban soils of Patna, Bihar (India). Arabian Journal of Geosciences, 12: 20. https://doi.org/10.1007/s12517-018-4188-9
  3. Ahmed S., Khurshid S., Qureshi F., Hussain A. Bhattacharya A. (2019). Heavy metals and geoaccumulation   index   development   for   groundwater   of   Mathura   city,   Uttar   Pradesh. Desalination and Water Treatment Journal, 138: 291-300. DOI: 10.5004/dwt.2019.23322
  4. Ansah K. E. E., Nkrumah D., Nti S. O. and Opoku F. (2019). Adsorption of heavy metals (Cu, Mn, Fe and Ni) from surface water using Oreochromis niloticus Scales. Pollution, 5(1): 115-122.DOI:10.22059/poll.2018.259347.454
  5. Arulkumar A., Paramasivam S. and Rajaram R. (2017). Toxic heavy metals in commercially important food fishes collected from Palk Bay, Southeastern India. Marine Pollution Bulletin,119: 454-459. https://doi.org/10.1016/j.marpolbul.2017.03.045
  6. Authman M. M. N. and Abbas H. H.H. (2007). Accumulation and distribution of copper and zinc in both water and some vital tissues of two fish species (Tilapia zillii and Mugil cephalus) of Lake Qarun, Fayoum Province, Egypt. Pakistan Journal of Biological Sciences, 10: 2106-DOI: 10.3923/pjbs.2007.2106.2122
  7. Brraich O. S. and Kaur, M. (2017). Histopathological alterations in the gills of Labeo rohita (Hamilton-Buchanan) due to Lead toxicity. Indian Journal of Experimental Biology, 55(8):576-583. http://nopr.niscair.res.in/handle/123456789/42552.
  8. Chopra A. K., Sharma M.K. and Chamoli S. (2011). Bioaccumulation of organochlorine pesticides  in  aquatic  system-an  overview  Environ  Monit  Assess,  173:  905-916.  DOI: 10.1007/s10661-010-1433-4
  9. Devi N.L. and Yadav I.C. (2018).  Chemometric evaluation of heavy metal pollut ions in Patna region of the Ganges alluvial plain, India: implication for source apportionment and health risk assessment. Environ Geochem Health, 40(6): 2343-2358. doi: 10.1007/s10653-018-0101-4.
  10. Dudani S. N., Lakhmapurkar J., Gavali D. and Patel T. (2017). Heavy metal accumulation in the mangrove ecosystem of south Gujarat coast, India. Turkish Journal of Fisheries and Aquatic Sciences 17: 755-766.  DOI: 10.4194/1303-2712-v17_4_11.
  11. Fatima M., Usmani N., Firdaus F., Zafeer M. F., Ahmad S., Akhtar K., Husain S.M. D., Ahmad M. H., Anis E. and Hossain M. M. (2015).   In vivo induction of antioxidant response and oxidative stress associated with genotoxicity and histopathological alteration in two commercial fish species due to heavy metals exposure in northern India (Kali) river. Comparative Biochemistry and Physiology, (176–177): 17-30. https://doi.org/10.1016/j.cbpc.2015.07.004.
  12. Federal Environmental Protection Agency (FEPA) Act  (1991). Guidelines and standards for Industrial effluent, gaseous emissions and hazardous waste management in Nigeria. National Environmental Protection Regulations, Federal Republic of Nigeria. Supplement to Official Gazette Extraordinary - Part B. 78 (42): B15 –31.
  13. Gupta A., Bhatnagar P. and Bakre P. P. (2016). Physicochemical properties of water and heavy metals  (Lead  and  Zinc)  in  water  and  sediment  of  a  reservoir  and  drainage  of  Jaipur (Rajasthan) – A comparative study. International Journal of Fisheries and Aquatic Studies 2016; 4(5): 407-412. http://www.fisheriesjournal.com/archives/2016/vol4issue5/PartF/4-5-6-979.pdf.
  14. Gupta D., Dwivedi A.K. and Tripathi M. (2018). Taxonomic validation of five fish species of subfamily Barbinae from the Ganga river system of northern India using traditional and truss analyses. PLoS ONE 13(10): e0206031. https://doi.org/10.1371/journal.pone.0206031.
  15. Jani K., Ghattargi V., Pawar S., Inamdar M., Shouche Y. and Sharma A. (2018). Anthropogenic activities induce depletion in microbial communities at Urban sites of the River Ganges. Curr Microbiol 75: 79-83. https://doi.org/10.1007/s00284-017-1352-5.
  16. Juncos R., Arcagni M., Squadrone S., Rizzoa A., Arribérea M., Barriga J.P., Battinie M.A., Campbellf L.M., Brizioc P., Abetec M.C., Guevara S. R. (2019). Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: Organ distribution and arsenic speciation. Ecotoxicology and Environmental Safety, 168: 431-442. https://doi.org/10.1016/j.ecoenv.2018.10.077
  17. Kumari P., Chowdhury A. and Maiti S. K. (2018). Assessment of heavy metal in the water, sediment, and two edible fish species of Jamshedpur Urban Agglomeration, India with special emphasis on human health risk, Human and Ecological Risk Assessment: An International Journal, 24(6): 1477-1500. DOI: 10.1080/10807039.2017.1415131.
  18. Kwaansa-Ansah E. E., Nkrumah D., Nti S. O. and Opoku F. (2019). Adsorption of Heavy Metals (Cu, Mn, Fe and Ni) from surface water using Oreochromis niloticus Scales. Pollution, 5(1):115-122. DOI: 10.22059/poll.2018.259347.454.
  19. Markowicz F., Król G. and Szymańska-Pulikowska A. (2019). Biodegradable package- Innovative purpose or source of the problem. Journal of Ecological Engineering, 20(1): 228-237.https://doi.org/10.12911/22998993/94585.
  20. Mukherjee K. and Pal S. (2018). Channel migration zone mapping of the River Ganga in the Diara surrounding region of Eastern India. Environ Dev Sustain, 20: 2181-2203. https://doi.org/10.1007/s10668-017-9984-y.
  21. Pal D. and Maiti S. K. (2018). Seasonal variation of heavy metals in water, sediment, and highly consumed cultured fish (Labeo rohita and Labeo bata) and potential health risk assessment in aquaculture pond of the coal city, Dhanbad (India). Environmental Science and Pollution Research 25: 12464-12480. https://doi.org/10.1007/s11356-018-1424-5.
  22. Pal  R.,  Gupta  M.  A.  and  Tripathi  A.  (2014).  Assessment  of  heavy  metals  in  suspended particulate matter in Moradabad, India. Journal of Environmental Biology, 35: 357-361.
  23. Pereira R., Leite E., Raimundo J., Guilherme S., Puga S., Ribeiro F. P., Santos M. A., Canário J., Almeida A. , Pacheco M. and Pereira P. (2018). Metals (loids) targeting fish eyes and brain in a contaminated estuary-Uncovering neurosensory  (un)susceptibility through bioaccumulation, antioxidant  and  morphometric profiles. Marine Environmental Research,140: 403-411.
  24. De Silva B. C.J., Hossain S., Dahanayake P. S. and Heo G. J. (2018). Frozen white-leg shrimp (Litopenaeus vannamei) in Korean markets as a source of Aeromonas spp. harboring antibiotic and heavy metal resistance genes. Microbial Drug Resistance, 24(10):1587- 1598. DOI: 10.1089/mdr.2018.0035.
  25. Adhikari K. and Mal U. (2019). Application of multivariate statistics in the analysis of groundwater geochemistry in and around the open cast coal  mines  of Barjora  block,  Bankura  district, West  Bengal,  India.  Environmental Earth Sciences, (2019) 78:72. https://doi.org/10.1007/s12665-019-8071-0.
  26. Punetha D., Tewari G., Pande C., Kharkwal G. C. and Tewari K. (2015). Investigation on heavy metal content in common grown vegetables from polluted sites of Moradabad district, India. Journal of the Indian Chemical Society, 92(1): 97-103.
  27. Rao N. S., Sunitha B., Rambabu R., Rao P. V. N., Rao P. S., B. D. Spandana, Sravanthi M. and Marghade D. (2018). Quality and degree of pollution of groundwater, using PIG from a rural part of Telangana State, India. Applied Water Science, 8:227 https://doi.org/10.1007/s13201-018-0864-x.
  28. Rezvanfar M. A., Hodjat M., Abdollahi M. (2016).Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sciences, 158: 137-160. https://doi.org/10.1016/j.lfs.2016.05.027.
  29. Sahu S., Saha D. and Shukla R. R. (2018). Sone megafan: a non-Himalayan megafan of craton origin, forming a potential groundwater reservoir in marginal parts of Ganga Basin, India. Hydrogeology Journal, 26: 2891-2917. https://doi.org/10.1007/s10040-018-1829-8.
  30. Sang W., Xu J., Bashir M. H. and Ali S. (2018). Developmental responses of Cryptolaemus montrouzieri to heavy metals transferred across multitrophic food chain. Chemosphere, 205:690-697.https://doi.org/10.1016/j.chemosphere.2018.02.073.
  31. Satapathy S. and Panda C.R. (2018). Source identification, environmental risk assessment and human health risks associated with toxic elements present in a coastal industrial environment,India. Environ Geochem Health, 40(6): 2243-2257. doi: 10.1007/s10653-018-0095-y.
  32. Sharma D. S. (2019). Risk assessment and mitigation Measures on the heavy Metal polluted water and sediment of the Kolleru Lake in Andhra Pradesh, India. Pollution, 5(1): 161-178. DOI: 10.22059/poll.2018.263546.493.
  33. Shrestha N.K., Du X. and Wang J. (2017). Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Science of the Total Environment, 601-602:425-440.
  34. Singh  H.,   Kushwaha   A.   and  Shukla  D.  N.  (2018).   Assessment   of  ecoenvironmental geochemistry of heavy metals pollution of the river Gandak, a major tributary of the river Ganga in Northern India. AIP Conference Proceedings 1952, 020038 (2018); https://doi.org/10.1063/1.5032000.
  35. Singh H., Pandey R., Singh S.K. and Shukla D.N. (2017). Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl Water Sci, 7: 4133-4149. doi 10.1007/s13201-017-0572-y.
  36. Singh, A. N., Shrivastava R., Mohan D. and Kumar, P. (2018).   Assessment of spatial and temporal variations in water quality dynamics of River Ganga in Varanasi.  Pollution, 4(2): 239-250. DOI: 10.22059/poll.2017.240626.310.
  37. Usmani Z. and Kumar V. (2017). Metal bioaccumulation in tissues of Puntius sarana and Labeo rohita and its associated risk status: A case study of Damodar River, India. Desalinatio n and Water Treatment, 76: 196-211. doi:10.5004/dwt.2017.20719.
  38. Varol M. and Sünbül M. R. (2019). Environmental contaminants in fish species from a large dam reservoir and their potential risks to human health. Ecotoxicology and Environmental Safety,169: 507-515. https://doi.org/10.1016/j.ecoenv.2018.11.060.
  39. Velusamy A., Kumar P. S., Ram A. and Chinnadurai S. (2014). Bioaccumulation of heavy metals in commercially important marine fishes from Mumbai Harbor, India Marine Pollution Bulletin, 81: 218-224. https://doi.org/10.1016/j.marpolbul.2014.01.049.
  40. Wang J. R., Liu G. Z. and Zhang C. J. (2018). Breakdown of Fermi liquid theory in topological multi-Weyl  semimetals. Phys.Rev.B, 98:205113. https://doi.org/10.1103/PhysRevB.98.205113.
  41. Wani, MA, Shammi, Q. J. and Singh, J. (2017). Evaluation of toxicity of heavy metal iron on a fresh water fish Labeorohita and its behavioural impacts. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(5): 197-203
  42. WHO.  (1985).  Guidelines  for  Drinking  Water  Quality.  Vol.  5,  World  Health Organization, Geneva, Switzerland.
  43. Yang Y., Ye X., He B. and Liu J. (2016). Cadmium potentiates toxicity of cypermethrin in zebrafish. Environ Toxicol Chem., 35(2): 435-45. doi: 10.1002/etc.3200.
  44. Zhaoa H., Quana W., Bekelea T. G., Chena M., Zhanga X. and Qu B. (2018). Effect of copper on the accumulation and elimination kinetics of fluoroquinolones in the zebrafish (Danio rerio). Ecotoxicology and Environmental Safety 156: 135-140. https://doi.org/10.1016/j.ecoenv.2018.03.025.
... Less

WordPress Lightbox Plugin