
2364/2018

(3) 211

VOL- (3) ISSUE 211 ISSN 2364/2018IF : 4.176 | IC Value : 78.46

Management Science

APPLIANCE MANAGEMENT FOR FEDERATED CLOUD ENVIRONMENTS

Mohammed Airaj || researche
Cloud infrastructures provide compelling features for scientific and engineering applications. Federated clouds
additionally promise improved scalability via access to a larger

pool of resources and improved service availability through geographically distributed redundant servers. Effective use of federated clouds
requires the creation of portable appliances and consistent appliance management techniques. The StratusLab Marketplace, a platform-agnostic
appliance registry, facilitates appliance management in a federated environment. This paper describes the Marketplace design goals,
implementation, and security concerns. It also covers the planned improvements based on our experience of running this service in production for
more than two years.

Rapid resource provisioning, dynamic scaling,customized computing
INTRODUCTION

Rapid resource provisioning, dynamic scaling, and customized
computing environments make cloud infrastructures a compelling
choice for a wide range of scientific and engineering applications.
Federated cloud infrastructures potentially offer further advantages
such as improved scaling via access to a larger pool of resources and
improved service availability through geographically distributed
redundant servers.
Users, however, will only use federated cloud infrastructures if the
advantages outweigh the additional overheads. Existing and well
tested techniques for federated identity management, used in cluster,
grid, and commercial services, can provide unified access to the
federated clouds. Specifically for clouds, much work has been done
on standardizing the cloud management interfaces (e.g. CIMI [1] and
OCCI [2]). Unfortunately, the critical areas of appliance portability
and management, required for consistent computing environments
across cloud infrastructures, have received much less attention.
A distinguishing feature of the StratusLab [3] cloud distribution is its
Marketplace, a platform-agnostic appliance registry that facilitates
sharing of appliances and their use on multiple cloud infrastructures.
This service and the associated appliance management techniques
lower barriers for users in both federated and non-federated cloud
environments. StratusLab provides a complete, open-source solution
for deploying public or private “Infrastructure as a Service” (IaaS)
cloud infrastructures and is designed to be both simple to install and
simple to use. In addition to the Marketplace, it provides services
similar to those in the more widely known distributions like
OpenStack [4], OpenNebula [5], and CloudStack [6].
This paper first discusses (Sec. II) what is required for creating
portable appliances. It then highlights the required appliance
management features by describing the primary use cases (Sec. III)
and provides examples of how these features are implemented in
StratusLab and other cloud distributions (Sec. IV). The core of the
paper (Sec. V–VII) describes the Marketplace: its design,
implementation, and associated security concerns. A discussion of
our experience in running this service and planned improvements
based on that experience is then given (Sec. VIII). A description of a
Marketplace deployed to support aparticular user community (i.e.,
bioinformatics) concludes the paper (Sec. IX).
II. PORTABLE APPLIANCES Before one can talk about sharing
appliances, the appliances themselves must be portable [7] technically
capable of running on different cloud platforms and generic enough
to appeal to a number of users. The technical issues relate to the
appliance format and contextualization.Appliance Format: Nearly
every hypervisor uses a different, native appliance format;
fortunately, tools exist to easily convert appliances between the
common formats. Users can take advantage of these tools to generate
alternate formats of their appliances. However to reduce the
maintenance burden for users, cloud infrastructures (and/or
hypervisors) ideally would accept all formats and make the necessary
conversions automatically. StratusLab, for example, automatically

converts appliances to the “raw” format it uses internally.
Appliance Contextualization: This allows an appliance to discover its
“context” and to automatically configure services to work properly on
a given infrastructure. Common mechanisms provide
contextualization information via a disk (CDROM or floppy)
attached to a virtual machine instance or
c 2013 IEEE via web server at a predefined local address. Image
creators can make portable appliances that detect and use multiple
contextualization mechanisms, although this requires more work.
Cloud distributions can minimize the additional work by supporting
multiple contextualization mechanisms. StratusLab supports
CloudInit [8], HEPiX [9], and OpenNebula [10] contextualization.
Fortunately, CloudInit is becoming a de facto standard and will
simplify both appliance creation and contextualization support by
cloud distributions.Creating portable appliances would be simpler if
there were one standard format and one contextualization
mechanism. Nonetheless portable appliances can already be created
by detecting and using multiple contextualization mechanisms and by
automated conversion of appliances between common formats.
StratusLab, in fact, provides portable, minimal appliances for most
popular Linux distributions.
III. ACTORS AND USE CASES Three core use cases—publishing
an appliance, using an appliance, and authorizing an
appliance—expose the required features and the actors for appliance
management in both federated and non-federated environments. The
primary actors and their roles are:
Creator Makes a new appliance and desires to publish the image for
her own or someone else’s use. EndorserValidates an appliance
against certain criteria and issues an endorsement to this effect. User
A scientist or engineer who wants to find and to use existing
appliances. Admin The cloud administrator responsible for
maintaining the cloud services and the security of the platform.
A. Publishing an Appliance Despite automation, appliance creation
is a tedious, errorprone, and lengthy process. Creators with the
expertise to create new appliances often want to share their
appliances with a larger community for wider use and better testing.
Doing so requires publishing the appliance.To publish the appliance,
the creators must make the appliance’s contents and metadata
available. At a minimum, the metadata needs to include information
about the appliance’s operating system, service configuration, and
access parameters. The appliance’s contents and metadata may be
provided either as separate files or as a single file.
B. Using an Appliance Users want to avoid the effort required to
create an appliance by reusing an existing one, if possible. A central
registry allows users to discover appropriate appliances based, for
example, on the operating system, what services are enabled, etc.
Complete appliance metadata is crucial for finding appropriate
appliances.Users also want to verify the origin of the metadata and
the integrity of the appliance’s contents. An endorsement of the
appliance is critical for establishing trust in the appliance itself. The
creator is usually also an endorser of an appliance,but appliances can
and often are endorsed by multiple people. This allows, for instance,

INTERNATIONAL JOURNAL OF SCIENTIFIC AND UNIVERSITY RESEARCH PUBLICATION Page 2/8

VOL- (3) ISSUE 211 ISSN 2364/2018IF : 4.176 | IC Value : 78.46

third party certification of appliances.Once users find a suitable
appliance, they want to run an instance of that appliance on a cloud
infrastructure. This requires transport of the appliance’s contents to
the cloud infrastructure. Although users can do this manually, cloud
infrastructures should handle the transport transparently given the
appliance identifier.
C. Authorizing an Appliance Most users of cloud infrastructures
have little or no experience with system management. They are
unfamiliar with best practices and techniques for securing machines,
for example limiting SSH access and configuration of firewalls.
Consequently, cloud administrators have a strong interest in ensuring
that users run appliances that have been built with these best practices
in mind.Before allowing a user to start an appliance, cloud
administrators will want to authorize that particular appliance. Based
on appliance metadata, administrators can define a policy that suits
their needs, ranging from very restrictive policies, which allow only
appliances endorsed by one particular person, to open policies, which
permit all appliances except those with known security problems.
IV. EXISTING APPLIANCE MANAGEMENT TECHNIQUES
Based on the previous generic use cases, it is clear that all cloud
distributions must provide tools or mechanisms for the:
• Generation of appliances,
• Storage of appliances,
• Efficient appliance transport, and
• Management of appliance metadata.
This section describes the approaches used to implement these
features in StratusLab and other cloud distributions.
A. Appliance Factories (Generation) As discussed earlier, the
manual creation of portable appliances remains an error-prone, time-
consuming process. In response to this, it is not surprising that tools
and services have appeared to simplify this task.
Services like Bitnami [11] are appliance factories that provide pre-
built, ready to deploy appliances. These can be used as is, or treated
as base appliances that a user can customize with their own software
and services.There are, however, a larger number of command line
tools that automate the process of creating an appliance. In general
these follow a common pattern of installing a specified base operating
system on a newly created disk image, then customizing that image.
The customization methods vary, using pre-defined, user-generated
templates or command line options. Examples of these tools include
VMBuilder [12], VeeWee [13], and BoxGrinder [14].StratusLab
follows this common pattern. “Image recipes” automate the creation
of minimal appliances for most common Linux distributions, using
the distribution’s standard configuration mechanism (e.g. Kickstart
for CentOS). These recipes are used to update automatically the base
StratusLab appliances, which can subsequently be customized by
users.
The StratusLab client includes a tool that automates the
customization of the base appliances. The tool installs packages
specified by the user and executes a user-defined script to configure
the newly generated appliance. The new appliance is made available
in the StratusLab storage service.
B. Appliance Repositories (Storage) No matter what cloud is used, a
copy of the appliance contents must exist on the cloud before virtual
machine instances of that appliance can be started. Cloud
distributions store appliances in a variety of ways.The OpenStack
project provides appliance discovery, registration and delivery via its
“Glance” service. The appliances can be stored in a simple filesystems
or object-storage systems like “Swift”. Both metadata about
registered appliances and the appliances themselves are exposed via
the Glance API.Eucalyptus [15], an open-source Iaa S cloud
distribution, provides an Amazon S3 interface to its “Walrus” storage
service. Virtual machine images are stored/retrieved using HTTP
put/get.OpenNebula uses the concept of a “Datastore” for storing
appliances. Multiple datastores can be created backed by one of a
selection of supported filesystem types. The method used to store and
retrieve appliances depends on the type of datastore used (e.g.

filesystem, iSCSI, Ceph). Sets of “transfer manager” scripts that
handle the interaction with the storage backend are provided for each
of the types.
For StratusLab, appliances can be stored in any web accessible
location. The location of the appliance is contained in the metadata
published in the Marketplace. This concept makes it possible to share
appliances between StratusLab users, and also between users of
different cloud infrastructures, because of the open accessibility and
portability of StratusLab appliances (Sec. II).
C. Appliance Transport In a federated cloud environment, the
appliances usually are made available outside of a particular cloud
infrastructure and must be transported to the cloud before use. Most
cloud distributions require the user to do this manually, but some
tools exist to facilitate automated transfers.The vmcaster/vmcatcher
tools developed within the HEPiX Virtualization Working Group
[16], use the concept of subscriptions to an appliance list. It makes
the download and transport of an appliance from the appliance list
similar to using a system package manager. The downloaded
appliances are verified against their X509 signatures and cached.In
StratusLab, appliances are transported from a web server or from
cloud storage. Based on the appliance identifier in the Marketplace,
the transport of the appliance is done transparently by the cloud
infrastructure. The downloaded appliances are then verified and
cached in the persistent disk storage,
ensuring that the transport of a given appliance is done only
once.Making the transfers transparent to users, requires that these
tools be integrated with the cloud’s appliance management workflows.
D. Appliance Registry An appliance registry allows users to search
for existing appliances based on certain criteria. Any cloud
distribution that allows users to share appliances must have a registry
of some sort. Most distributions do provide such a service, although
in many cases it is integrated with the appliance repository.
The Eucalyptus Image Store provides a set of base appliances that
can be downloaded and imported into a local Eucalyptus cloud using
a command-line client.The OpenNebula AppMarket allows registered
appliance developers to upload appliances that users can then
download to use in their local cloud. This is done using the
OpenNebula command-line client, or through the “Sunstone”
GUI.The European Grid Initiative (EGI) Applications Database
(AppDB) [17], is a central service to which appliance lists can be
published. This is achieved through integration with the
vmcaster/vmcatcher (Sec. IV-C) tools, which are used to produce,
sign, and upload a list. By using vmcatcher to subscribe to a published
appliance list, appliances can be automatically downloaded.The
StratusLab Marketplace is at the center of the appliance handling
mechanisms in the StratusLab cloud distribution. It contains metadata
about appliances and serves as a registry for shared appliances. In
order to use and/or share an appliance, its metadata must be
registered in the Marketplace.Once an appliance is created,
StratusLab provides simple tools for building, cryptographically
signing with a valid certificate, and uploading the metadata to the
Marketplace. The Marketplace validates the metadata entry and
verifies the email address of the endorser. If all the checks pass, the
metadata will then be visible in the Marketplace and other users can
search for the entry.
V. DESIGN AND REQUIREMENTS The Marketplace provides a
database of available appliances, allowing users to find appliances of
interest and administrators to validate those appliances. To make the
database easily accessible it is implemented as a web service
permitting both programmatic and browser-based access. The design
and implementation are agnostic with respect to the cloud
distribution, allowing any cloud distribution to interface to the
Marketplace.Table I contains a detailed list of requirements for the
Marketplace as an appliance registry and for the appliance
metadata.1 The core requirements have been derived from the
primary use cases and feedback from the StratusLab users and
administrators.

INTERNATIONAL JOURNAL OF SCIENTIFIC AND UNIVERSITY RESEARCH PUBLICATION Page 3/8

VOL- (3) ISSUE 211 ISSN 2364/2018IF : 4.176 | IC Value : 78.46

1References prefixed with ‘RU’ or ‘RS’ in the following text refer to
the requirements in this table.
T1: Original creator (A) endorses appliance providing basic
information.
T2: Third party (B) endorses appliance, optionally providing
complementary information.
T3: Endorser A updates information about the appliance.
T4: Endorsement from Endorser A expires; other endorsements still
valid.
T5: An administrator (C) encounters problem with appliance and
deprecates it.
T6: Endorser B also deprecates appliance.
A. Timeline A core concept within the Marketplace is the appliance
timeline, a complete history of all endorsements related to a given
appliance (see Fig. 1). An appliance can be endorsed by more than
one person to allow for third party validation and approval of
appliances. [RU3] Moreover, a particular endorser may change her
endorsement over time, updating the metadata data associated with
the appliance or explicitly deprecating the appliance. [RU2]
Endorsements are also timelimited, containing an explicit validity
period.
Users of the Marketplace can retrieve the full history, for example to
conduct an audit on why a particular appliance was authorized at a
particular point in time. Normally however, the Marketplace users
only want to see the current endorsements for an appliance, that is the
list of the latest, non-expired endorsements from all of the endorsers
of an appliance. This allows users and administrators alike to decide
if an appliance is currently valid.
B. Separation of Metadata and Appliance Contents A conscious
design decision was made to separate the storage and transport of
appliance contents from the Marketplace implementation. Storing the
appliance contents outside of the Marketplace makes it easier to:
• Scale the Marketplace implementation,
• Create mirrors of the Marketplace,
• Ensure the implementation is independent of the transport protocol
• Allow owners of the image to control access to the appliance
contents, and
• Relieve the operator of the Marketplace from copyright and
licensing concerns.
It also allows the StratusLab distribution to take advantage of
standard web servers or other cloud storage services for the appliance
contents.
VI. IMPLEMENTATION The Marketplace implementation uses
standard web technologies to create a service accessible
programmatically and via a web browser. For programmatic access,
the service exposes an interface over HTTP(S) using RESTlet [18], a
Java
TABLE I. REQUIREMENTS
RU1 Anyone with a valid email address can upload metadata
descriptions to the Marketplace.
RU2 Users can “replace” existing metadata descriptions by uploading
a new signed description(s).
RU3 Multiple metadata entries may be associated with a particular
appliance, allowing third parties to endorse images.
RU4 All validated descriptions uploaded to the site must always be
available to provide a timeline of the metadata evolution.
RU5 Users must be able to search the metadata database on a
reasonable subset of the possible keys, for example the image
identifier and the endorser’s email address.
RU6 The registry should allow the metadata to be downloaded in
alternate formats, notably JSON and HTML.
RU7 The service must be easy to access from all programming
languages (including scripting languages) and usable from a web
browser.
RU8 The underlying schema for the metadata entries must be flexible
and extensible, to account for different and evolving needs.
RU9 Entries should contain at least one location from which the

appliance can be obtained; entries without a location are appropriate
only for deprecated appliances.
RS1 Metadata entries must be cryptographically signed with the
endorser information matching the information in the certificate
itself.
RS2 Metadata entries must contain a valid email address, which is
confirmed for each entry upload.
RS3 Users must be able to download the original signed metadata in
the RDF/XML format from the registry for verification.
RS4 All entries must contain a creation date for the endorsement.
The server must only accept descriptions with a creation date more
recent than the current latest.
RS5 It must be possible to unambiguously associate an entry to an
appliance and to verify the integrity of the appliance.
framework for RESTful [19] services. HTML representations and
browser interactions are provided with a combination of FreeMarker
[20] (a Java template engine library), CSS, JavaScript, and JQuery
[21].
The implementation allows any cryptographically signed metadata
entry with a valid email address to be uploaded to the Marketplace.
This allows open, but not anonymous, posting to the service. All of
the validated entries can be read without authentication. [RU1]
A. Identifiers The separation of the appliance metadata and the
appliance contents requires an unambiguous mechanism for matching
the two. StratusLab uses the SHA-1 hash of the appliance contents to
generate an unambiguous, intrinsic identifier for the image. The
identifier is the 27 character string generated by encoding the SHA-1
checksum with the base64url encoding. [RS5]
B. Metadata Semantic web technologies were designed to manage
metadata about (third-party) resources identified with a URI.
Consequently, they are ideally suited to this situation in which the
Marketplace must manage metadata about appliances. These
technologies already provide standard formats for the metadata
(RDF/XML [22], [23], [24]) and query languages (SeRQL [25],
SPARQL [26]). The Marketplace implementation makes use of the
OpenRDF Sesame [27] framework to provide search capabilities
over the metadata database. [RU5] Working with RDF also requires
an agreed vocabulary to ensure a common semantic meaning of the
metadata tags. The Dublin Core Metadata Initiative has published a
vocabulary [28] that can be used for much of the appliance metadata
descriptions. This is complemented by a vocabulary specific to
StratusLab, which includes, for example, the location URL(s) of the
appliance. [RU9] Using RDF also allows additional metadata fields to
be specified (in separate namespaces) to complement the standard
fields, making it possible for users to extend the schema with
application-specific metadata. [RU8] RDF with Dublin Core
maintains a good balance between machine and human readability.
(See Fig. 2 for an abbreviated example for a CentOS appliance.)As
the overall aim is to provide a high-level description of an appliance
these metadata standards are more suited than something more heavy-
weight, such as the Open Virtualization Format (OVF). OVF [29]
describes the packaging and distribution of a full virtual machine
rather than just an appliance, and so would contain a large volume of
additional information that is not particularly relevant for cloud users
and administrators. It should be noted however, that the RDF
metadata descriptions are easily extensible and could include the
OVF metadata if necessary. Similarly, the use of OVF to package the
appliance itself is not precluded.To validate the metadata associated
with a particular appliance, it is necessary to sign individual entries
cryptographically. As the raw format used for the metadata entries is
XML, the XML Signature [30] specification is reused. Conveniently,
modern Java runtime environments include this as a standard part of
the API. [RS1]
C. REST Resource URLs REST over HTTP provides convenient
access to the service via a browser and facilitates programmatic
access from all programming languages. The mapping between URLs
and service resources essentially defines the API of the service.

INTERNATIONAL JOURNAL OF SCIENTIFIC AND UNIVERSITY RESEARCH PUBLICATION Page 4/8

VOL- (3) ISSUE 211 ISSN 2364/2018IF : 4.176 | IC Value : 78.46

[RU7]
Table II provides the URL mapping for the Marketplace along with
the actions associated with the given HTTP verbs. (The DELETE and
PUT actions are not supported by any URLs.) Within the table
“identifier” refers to the 27 character image identifier, “email” refers
to the endorser’s email address, and “date” refers to endorsement date
written in the format yyyy-MM-ddThh:mm:ssZ. All of the URLs
support XML and HTML representations. Individual metadata entries
also provide a JSON representation. [RU6]
D. Storage and Query of Metadata
Two copies of successfully validated and confirmed metadata are
stored on the filesystem. The original uploaded file is saved
unmodified, while a second copy stripped of the XMLTABLE

II. CORE REST RESOURCES GET redirects to /metadata
resource/endorsersGET list of endorsers in database
OPTIONS number of endorsers; last update time /endorsers/hemaili
GET statistics about particular endorser OPTIONS number of
entries; last update time /metadata/?hqueryi GET list of identifiers
and selected fields (query terms of (identifer, email, and created can
be used to refine list)
POST create new metadata entry OPTIONS number of entries; last
update time/metadata/hidentifieri/hemaili/hdatei GET unique
metadata entry/query
GET form for simple query of service
POST submit query/upload
GET form for browser upload of metadata entry
POST create new entry via post to /metadata
signature is added to the Sesame RDF repository. Storing the
metadata in the repository allows SPARQL queries to be easily
supported. A request for a specific metadata entry in XML format
returns the original signed file. [RS3]
VII. SECURITY CONSIDERATIONS The Marketplace and the
information contained within the Marketplace play key roles in
maintaining the security of the cloud infrastructures. However, the
security policies both for the users and for the cloud administrators
can vary widely and consequently, the Marketplace itself does not
define or enforce any security policy. It instead provides the
appliance metadata allowing both users and cloud administrators to
make informed decisions about the appliances.
To maintain confidence in the information provided by the
Marketplace, it must securely provide complete, accurate information
about the appliances. We have identified a number of security
concerns and describe how the Marketplace solves them.
A. Altered Appliances Because the appliance metadata is separated
from the appliance contents, there is a danger that the appliance
contents could be altered, either accidently or maliciously. As
described above, the appliance identifier is based on the SHA-1 hash
of the appliance contents ensuring a very reliable link between the
metadata and the appliance contents. [RS5] Although modifying an
appliance while maintaining the SHA-1 hash is difficult, it is a remote
possibility, allowing an altered appliance to masquerade as the
original. To minimize this possibility, additional information is
provided in the metadata descriptions: the size of the file in bytes and
the MD5, SHA-1, SHA-256, and SHA-512 hash values. The
likelihood that someone can create an altered appliance with exactly
the same length and multiple checksums is negligible. [RS5]
B. Verification of Uploaded Metadata When new metadata entries
are uploaded to the Marketplace, the service validates the entry
before accepting it. To validate an entry, the server:
• Verifies that the metadata is a valid, signed RDF/XML file,
following the defined schemas and conventions,
• Accepts only entries endorsed after the most recent entry for a
particular appliance, [RS4] and
• Confirms the email address of the entry. [RS2]
Only validated metadata entries are visible from the standard
Marketplace interface.

C. Altered Appliance Timeline The Marketplace must ensure that
all of the data concerning an appliance is available. By design, the
Marketplace never removes metadata entries—the entire appliance
timeline is always available. [RU4] By default however, only the
current endorsements are provided as these are the entries needed to
make decisions about the validity of an appliance.
The Marketplace does not allow the history of an appliance to be
altered. As described above, the Marketplace does not accept entries
with a timestamp earlier than the latest entry in the timeline. It also
validates the endorser to avoid one endorser from impersonating
another.
The Marketplace must ensure that the data transmitted to users is not
altered, for example by a third-party removing deprecation notices
from the returned information. To ensure the integrity of the returned
information, the Marketplace only transmits information over a
secured communication channel.
D. Compromised Marketplace Server If someone were to take
control of the Marketplace server, he could not alter individual
metadata entries as those are signed by the endorsers’ private keys
which are not stored on the server. However, he could delete entries
making, for instance, deprecated images appear valid.
This is a significant risk and the server must be operated according to
modern best practices to avoid this. In addition, backups of the
information should be kept and periodically compared to the current
information to detect any such attack.
VIII. PLANNED IMPROVEMENTS In parallel with its software
development, the collaboration operates a federated cloud
infrastructure with sites in Orsay, France and Athens, Greece. These
sites share a common user authentication framework and
Marketplace allowing users to allocate resources and to use
appliances on either site. The collaboration uses this production cloud
to validate its software in real world conditions.
As a core service, the Marketplace is accessed frequently by users to
find appliances and by the cloud infrastructures when authorizing
requests for new virtual machine instances. Figure 3 shows statistics
and the frequency of requests for the relatively light period in
August. The number of requests endorsers 44 current appliances 105
deprecated appliances 170 expired appliances 832 Weekend days are
shaded. The current number of appliances and endorsers are also
shown.
will scale with the number of users and the number of virtual
machines being started.
Overall the service has performed well, with minor problems being
addressed as the software evolves over time. Some outstanding issues
and potential solutions are described below.
A. Availability Having a central Marketplace instance allows users to
easily find all of the appliances from a single location. Similarly, it
allows image creators to upload the metadata just once. However, the
Marketplace is consulted every time a new machine instance is
launched to check if an appliance has been deprecated. Consequently
if the Marketplace is not available, new instances cannot be created
on any cloud relying on the Marketplace. Future iterations of the
Marketplace must provide redundancy and high-availability of the
Marketplace service.To provide for this, a replication scheme will be
implemented that allows for multiple Marketplace instances to be
deployed, each maintaining a local copy of the metadata entries. As
all the information required to rebuild the metadata index stored in
Sesame is the set of raw metadata files, it is only these that need be
replicated. A potential solution would be to use a Git repository as the
core ‘database’ for the metadata entries, with each Marketplace
updating its index periodically from a local clone of the global
repository.
B. Data Protection By design the appliance metadata is considered
public. In reality, however, both users and administrators would like
to restrict the visibility of the appliance metadata for certain
appliances. Many cloud administrators would like to run a “private”
Marketplace to limit the visibility of certain appliances while still

INTERNATIONAL JOURNAL OF SCIENTIFIC AND UNIVERSITY RESEARCH PUBLICATION Page 5/8

VOL- (3) ISSUE 211 ISSN 2364/2018IF : 4.176 | IC Value : 78.46

taking advantage of the central, public Marketplace instance.
There must be a mechanism for federating Marketplace instances in
the future and the move to using Git for metadata file management
may also facilitate the federation of different Marketplace instances.
C. Appliance Quality Although the metadata contains a significant
amount of information about an appliance, it does not contain
information about how well the appliance functions for users. A
common
request has been to add social features to the Marketplace to allow
users of an appliance to leave comments and to signal problems with
the appliance itself. A possible approach to add these features
without overly complicating the Marketplace implementation would
be to make use of an external service such as Disqus [31].
D. Appliance Evolution
Appliances naturally evolve as operating system updates are applied
and new services are added. However each time an appliance is
updated, the SHA-1 hash and the corresponding appliance identifier
change. This makes it difficult for users to track the evolution of an
appliance and impossible to use a stable identifier for, for example,
the latest version of the CentOS appliance.
Recently a ‘tag’ feature has been added to the Marketplace. This
allows an endorser to provide a simple label for a series of
appliances, where the tag (namespaced by the endorser’s email) will
always resolve to the latest appliance identifier. By using the tag,
users can always use the latest version of an appliance without having
to find the associated identifier manually.
A complementary and more rigorous solution would be to make use
of the Dublin Core terms replaces and isReplacedBy. This would
provide a link in each metadata entry to the previous and next entries
in the evolution of the appliance. The StratusLab tools must be
updated to simplify the use of these terms to ensure that they are
widely used.
IX. BIOINFORMATICS APPLIANCE METADATA In addition
to the reference cloud infrastructure, a cloud infrastructure devoted
to biology (IDB cloud [32]), with a separate Marketplace instance,
has been deployed at IBCP2. IDB cloud is the first brick of the future
federated cloud infrastructure of the French Bioinformatics Institute.
Biologists and bioinformaticians frequently combine multiple
software packages (from the thousands available in the international
community) to study their data with their own or public analysis
pipelines. With the advent of the cloud, experts now create
customized appliances, but these are often not adequately described
or easily located. Helping scientists easily identify suitable appliances
containing the required software packages is essential.
Operating a separate Marketplace with a limited thematic scope
already allows users to find appropriate appliances more easily. It also
reduces “noise” in the central Marketplace from iterative attempts to
create working appliances. More importantly, however, it allows
visibility contraints for the bioinformatic appliances, such as
confidentiality for specific projects, to be respected.
To further facilitate searches for appropriate appliances, the generic
appliance metadata schema (Fig. 2) has been extended with
additional elements related to bioinformatics tools (Fig. 4). These
metadata can be used to select suitable bioinformatics appliances
containing the required tools by searching for the tools themselves
(e.g. BLAST or ClustalW2) 2Institut de Biologie et Chimie des
Prot´eines in Lyon, France Appliance creators enhance the
descriptions by appending ‘bio:tool’ entries in the appliance metadata
(see Fig. 5).As with all metadata, the biotool information is indexed
by the Marketplace, allowing bioinformaticians and biologists to
search the Marketplace with a SPARQL query to find an appropriate
appliance. SPARQL, however, operates at a rather low level, so to
further simplify searches, the Marketplace was linked with the IDB
bioinformatics web portal. The portal is synchronized (manually at
this point) with the list of suitable appliances from the Marketplace.
The portal provides users with popup menus to filter appliances
according to the above criteria. With the Marketplace, additional

metadata, and the portal, it is trivial for users to find and run the right
appliance.
X. SUMMARY The StratusLab Marketplace has been operated in a
federated cloud environment for more than two years. Over that time,
it has evolved, taking into account operational and user concerns. A
roadmap has been defined to make the service even more reliable and
functional. With its platform agnostic design, we look forward to
interfacing the service with another IaaS cloud distribution.
ACKNOWLEDGEMENTS StratusLab was co-funded by the
European Commission through the 7th Framework Programme
(Capacities), contract number INFSO-RI-261552 from June 2010 to
May 2012. The authors also gratefully acknowledge support from the
other members of the StratusLab collaboration and their institutes.

CONCLUSION

StratusLab was co-funded by the European Commission
through the 7th Framework Programme (Capacities), contract
number INFSO-RI-261552 from June 2010 to May 2012. The
authors also gratefully acknowledge support from the other
members of the StratusLab collaboration and their institutes.

ref_str

1. Distributed Management Task Force, Inc., “Cloud Infrastructure
Management Interface (CIMI) Model and RESTful HTTP-based
Protocol,”
http://dmtf.org/sites/default/files/standards/documents/DSP0263
1.0.1.pdf.

2. Open Grid Forum, “Open Cloud Computing Interface - RESTful
HTTP Rendering,” http://www.ogf.org/documents/GFD.185.pdf.

3. C. Loomis, M. Airaj, M.-E. B´egin, E. Floros, S. Kenny, and D.
O’Callaghan, “Stratuslab cloud distribution,” in European Research
Activities in Cloud Computing, D. Petcu and J. L. V´azquez Poletti,
Eds. Cambridge Scholars Publishing, 2012.

4. The OpenStack Foundation, “OpenStack,”
http://www.openstack.org.

5. OpenNebula Project, “OpenNebula,” http://opennebula.org/.
6. Apache Software Foundation, “CloudStack,”

http://cloudstack.apache. org/.
7. D. Petcu, “Portability and interoperability between clouds: challenges

and case study,” in Lecture Notes in Computer Science, vol. 6994,
2011, pp. 62–74.

8. Scott Moser, et al., “CloudInit,” https://launchpad.net/cloud-init/.
9. O. Synge, et al., “Contextualisation,” in HEPIX Virtualisation

Working Group, 2012. [Online]. Available:
http://grid.desy.de/vm/hepix/vwg/ doc/pdf/Book-a4.pdf

10. R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Iaas
cloud architecture: From virtualized datacenters to federated cloud
infrastructures,” Computer, vol. 45, no. 12, pp. 65–72, 2012.

11. “Bitnami,” http://bitnami.com/.
12. “Virtual Machine Builder,” https://launchpad.net/vmbuilder.
13. “veewee,” https://github.com/jedi4ever/veewee.
14. “BoxGrinder,” http://boxgrinder.org.
15. Eucalyptus Systems, “Eucalyptus,” http://www.eucalyptus.com/.
16. O. Synge, et al., “Virtual machine image transfer,” in HEPIX

Virtualisation Working Group, 2012.
17. EGI Applications Database, “AppDB,” https://appdb.egi.eu/.
18. “RESTlet–RESTful web framework for Java,”

http://www.restlet.org/.
19. Roy Thomas Fielding, “Architectural Styles and the Design of

Networkbased Software Architectures,” Ph.D. dissertation, University
of California, Irvine, 2000.

20. “FreeMarker–Java Template Engine Library,” http://freemarker.
sourceforge.net/.

21. Eric Sarrion, jQuery UI. O’Reilly Media, 2012.
22. “RDF/XML Syntax Specification (Revised),”

http://www.w3.org/TR/ 2004/REC-rdf-syntax-grammar-20040210/.
23. “RDF Primer,” http://www.w3.org/TR/2004/ REC-rdf-

primer-20040210/.

INTERNATIONAL JOURNAL OF SCIENTIFIC AND UNIVERSITY RESEARCH PUBLICATION Page 6/8

VOL- (3) ISSUE 211 ISSN 2364/2018IF : 4.176 | IC Value : 78.46

24. “RDF Vocabulary Description Language 1.0: RDF Schema,” http:
//www.w3.org/TR/2004/REC rdf-schema-20040210/.

25. “SeRQL–Sesame RDF Query Language,”
http://www.openrdf.org/doc/ sesame2/users/ch09.html.

26. “SPARQL Query Language for RDF,”
http://www.w3.org/TR/2008/ REC-rdf-sparql-query-2008011.

27. “Sesame–Open source framework for storage, inferencing and
querying of RDF data.” http://www.openrdf.org/.

28. DCMI Usage Board, “DCMI Metadata Terms,” http://dublincore.org/
documents/2010/10/11/dcmi-terms/.

29. Distributed Management Task Force, Inc., “Open Virtualization
Format Specification,”
http://dmtf.org/sites/default/files/standards/documents/ DSP0243
2.0.0.pdf.

30. Mark Bartel, et al., “XML Signature Syntax and Processing (Second
Edition),” http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/.

31. “Disqus,” http://www.disqus.com. [32] “IDBcloud,” https://idee-
b.ibcp.fr/cloud.html.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

