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In recent years, the world witnessed many devastating wildfires that resulted in destructive human and
environmental impacts across the globe. Emergency response and rapid response

for mitigation calls for effective approaches for near real-time wildfire monitoring. Capable of penetrating clouds and smoke, and imaging day and
night, Synthetic Aperture Radar (SAR) can play a critical role in wildfire monitoring. In this communication, we investigated and demonstrated the
potential of Sentinel-1 SAR time series with a deep learning framework for near real-time wildfire progression monitoring. The deep learning
framework, based on a Convolutional Neural Network (CNN), is developed to detect burnt areas automatically using every new SAR image
acquired during the wildfires and by exploiting all available pre-fire SAR time series to characterize the temporal backscatter variations. The
results show that Sentinel-1 SAR backscatter can detect wildfires and capture their temporal progression as demonstrated for three large and
impactful wildfires: the 2017 Elephant Hill Fire in British Columbia, Canada, the 2018 Camp Fire in California, USA, and the 2019 Chuckegg
Creek Fire in northern Alberta, Canada. Compared to the traditional log-ratio operator, CNN-based deep learning framework can better
distinguish burnt areas with higher accuracy. These findings demonstrate that spaceborne SAR time series with deep learning can play a
significant role for near real-time wildfire monitoring when the data becomes available at daily and hourly intervals with the launches of
RADARSAT Constellation Missions in 2019, and SAR CubeSat constellations.

Yifang Ban would like to KTH Royal Institute of Technology for the
INTRODUCTION

Research shows that human-induced climate changes have led to hot,
dry conditions that increase the outbreaks of wildfires in various
regions1. In both 2017 and 2018, the world witnessed many
devastating wildfires. Hotter summers and drought across northern
Europe and North America have resulted in increased wildfire
activity in cooler and wetter regions such as Sweden, even north of
the Arctic Circle. During the summer of 2018, Sweden experienced
an exceptionally long period of drought resulting in over 50 forest
fires. In British Columbia, Canada, a total of 2,092 wildfires burnt
more than 1.3 million hectares of land in 2018, while in California,
USA, a total of 8,527 wildfires burned an area of 800 000 hectares,
the deadliest and most destructive wildfire season in California’s
history. Early identification of the location and size of these fires can
inform fire-fighting operations at an early stage. Moreover, being
able to monitor wildfire progression and burnt areas in both cloudy
and smoky conditions as well as during day and night would increase
the information base for decision-making and improve the speed and
efficiency for wildfire emergency response. With its synoptic view
and large area coverage at regular revisits, satellite remote sensing has
long played a crucial role in disaster management including wildfire.
Owing to the rapid development of satellite technology, we are
moving forward to a new era of Earth Observation (EO). National
and International space agencies, as well as innovative companies
have started various EO programs that are able to acquire massive
amounts of satellite imagery with increasingly higher spatial
resolution and rapid temporal intervals. With the recent launches of
the European Space Agency (ESA)’s Sentinel-1 and Sentinel-2
satellites, SAR and optical data with global coverage and frequent
revisits have become freely available. These open EO big data
represent a great opportunity to develop innovative methodologies for
near real-time wildfire monitoring. The main challenge is the lack of
robust and automated methods to extract relevant information from
such massive amounts of EO data.

For active wildfire monitoring, the low spatial resolution Visible
Infrared Imaging Radiometer Suite (VIIRS) and the Moderate
Resolution Imaging Spectroradiometer (MODIS) are often used for
preliminary mapping and contextual awareness while Landsat and
Sentinel-2 data are deployed for post-fire boundary determination
and burn severity mapping2,3,4,5. Optical images at critical time frame,
however, are often unavailable due to frequent cloud cover in the

boreal and tropical regions6. As an active sensing technology, not
relying on solar radiation, SAR is capable of penetrating clouds and
smoke as well as imaging day and night7. As a result, SAR has been
playing an increasingly important role in environmental change
monitoring. Past studies evaluated various SAR data at X-, C-, and L-
bands in different polarizations for burnt area mapping and burn
severity estimation8,9,10,11,12,13,14,15,16,17. For examples, Bourgeau-
Chavez et al.17 evaluated European remote sensing satellite (ERS) C-
band SAR for detection of boreal fire scars in various boreal
ecosystems globally was possible using C-band SAR data. Gimeno et
al., identified burnt areas in Mediterranean forests using Principle
Component Analysis (PCA) and neural network classification18.
Polychronki et al. evaluated Advanced Land Observing Satellite
(ALOS) the Phased Array type L-band Synthetic Aperture Radar
(PALSAR) imagery for burnt area mapping using an object-based
classification in Greece13. Tanase et al. investigated spaceborne X-,
C- and L-band co- and cross-polarized data for burn severity
estimation in Spanish pine forests16. Previous results reported a
substantial decrease of the C-band VH backscatter in fire-disturbed
forests and demonstrated the effectiveness of cross-polarized SAR
for detection of burn scars11,19. Conversely, several C-band SAR-
based studies revealed an increase in co-polarized backscatter from
fire-disturbed forests in boreal and Mediterranean due to rain-fall
events and low evapotranspiration10,13,14,15,17,20,21. As a result of the
partial or complete removal of forest canopy, changes in the soil
moisture have a significant effect on SAR backscatter. C-band SAR
backscatter from fire scars were observed to 3–6 dB higher than the
adjacent unburnt forest in Alaska when the soil was wet. Similar
backscatter behaviors caused by soil moisture changes were also
observed in fire-disturbed forests in various environmental conditions
around the world, including Australia, Canada, Indonesia, the
Mediterranean and Siberia17,18,20,22,23.

The capability of Sentinel-1 for fire scar mapping was investigated in
recent studies with mixed results8,11,24. According to Imperatore et
al.11, there is an obvious change in VH backscatter for the burnt area
dominated by forests, thus, permitting the delineation of the fire-
affected areas. However, the detection of the burnt areas for grass
and non-forest vegetation is more complex. C-band SAR backscatter
of burnt grass is similar to that of dry grass. The main challenges of
using SAR for detecting burnt areas and mapping fire scars are
related to the complex interactions of SAR system parameters,
including frequency, polarization, incidence angles and look
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direction, and land surface parameters, including geometric
properties (type and structure, surface roughness, geometry and
topography etc.) and dielectric properties (i.e., surface moisture), as
well as environmental conditions (e.g., rain, dew, wind etc.).
Therefore, further research is needed to better understand the
temporal backscatter behavior of Sentinel-1 C-Band SAR in VV and
VH polarizations for burnt forest and grassland compared to that of
burnt areas. Spaceborne SAR data and their fusion with Landsat data
were also investigated for near-real time deforestation
monitoring25,26,27. To the best of our knowledge, however, no study
was found on SAR for wildfire progression monitoring. Therefore, it
is desirable to investigate Sentinel-1 SAR dense time series data for
wildfire progression monitoring. Wildfires burn vegetation thus result
in changes in the SAR backscatter intensity that can be identified
with change detection.

Change detection has been used successfully in many diverse
applications, including monitoring environmental changes, land-
use/land-cover dynamics, deforestation, disaster damage, and
urbanization28,29,30,31,32,33. Various change detection techniques have
been developed, such as those by Bruzzone and Prieto34, Bazi et al.35,
Bovolo and Bruzzone36 and Bovolo et al.37. However, most of these
methods and algorithms were developed considering the availability
of a few or just two images (pre- and post-event) that can be used to
detect the changes. Change detection remains a challenging task using
SAR data due to complexity of wildfire affected forest environment.
Some of the common issues of change detection, however, could be
resolved by exploiting the high temporal resolution of Sentinel-1 time
series using the highly redundant information following the big data
paradigm. The idea is to exploit the temporal fluctuations of the
remotely sensed measurements to remove the confusion between
burnt areas and other changes. As one of the fastest-growing trends in
big data analytics, deep learning is proving to be a very effective
technique for large-scale image recognition38,39,40 and semantic
segmentation41. Among deep learning models, the most exciting is
the potential of CNN in learning complex non-linear transformation
and extracting mid- and high-level feature representations from raw
image pixels by interleaving convolutional and pooling layers. Recent
studies highlight the potential to extract changes from EO data using
deep neural networks42,43,44,45. Therefore, CNN-based framework and
other deep learning methods are investigated in this research.

In this research, we investigate Sentinel-1 SAR dense time series for
near real-time wildfire progression monitoring through smoke, cloud
and night using a deep learning-based framework. Our specific
objectives are: (1) better understand the temporal backscatter
patterns of burnt forest and grassland; (2) evaluate Sentinel-1 SAR
dense time series for near real-time wildfire progression monitoring;
(3) develop a CNN-based deep learning framework that could
efficiently and automatically detect burnt areas using the SAR dense
time series data; and (4) validate the proposed deep learning
framework in three different study areas, the Elephant Hill Fire
(2017) in British Columbia of Canada, the Camp Fire (2018) in
California, U.S.A., and the Chuckegg Creek Fire (2019) in northern
Alberta of Canada.

Study Areas and Data Description
Study areas
Three recent wildfires, the Elephant Hill wildfire (Canada, 2017), the
Camp Fire (U.S.A., 2018) and the Chuckegg Creek Fire (Canada,
2019), were selected for this research to represent different
environmental conditions. The Elephant Hill wildfire (Canada) was
British Columbia’s largest wildfire in 2017. Started on July 6 along
the Thompson River near Ashcroft and contained in mid-September,
2017, the fire destroyed over 300 buildings, prompted mass
evacuations and burnt an estimated 192,000 hectares of forest. The
notably large fire burned from Ashcroft and Cache Creek in the

southwest, north to Clinton and further northwest, then over to
Sheridan Lake in the northeast and south along the margin of the
Deadman Valley. The region is sparsely populated and has complex
terrain with limited access capability. The elevations in the area range
from 278 m to 1785 m with a mean elevation of 1142 m and a
standard deviation of 224.9 m. Further relating the topographic
complexity of the terrain, the slopes vary from 0° to 71° with the
mean slope of 8.1° and standard deviation of 6.85°. The major land
cover classes include forest, grassland, clear cuts, barren land and
settlements.

The Camp Fire was the deadliest and most destructive wildfire in
California history. Started on November 8 near Camp Creek Road in
Butte County, northern California and contained on November 25,
2018, the fire caused at least 85 civilian fatalities, 3 missing and 17
injured, and the evacuation of 52000 people. The fire also destroyed
18804 structures and burnt over 62000 hectares. The area is located
in the foothills of the Sierra Nevada and the Sierra Nevada mountain
range in the western United States. Compared to Elephant Hill, this
region has steep complex mountainous terrain. The elevations in the
area range from 49 m to 1569 m with a mean elevation of 551 m and
a standard deviation of 325 m. The slopes vary from 0° to 72°. The
mean slope is 14.6°, double that of the Elephant Hill, with a standard
deviation at 9.91°. The major land cover types include forest,
grassland, barren land, crop land and settlements.

The Chuckegg Creek Fire, located west of High Level, was the
largest forest fire in Alberta in 2019. Started on May 17, 2019 and
contained on July 26, 2019, the fire burned an estimated 350,134
hectares of vegetation. Compared to the above two study areas, the
terrain in the region is less complex and relatively flat. The elevations
in the area range from 248 m to 796 m with a mean elevation of
375.5 m and a standard deviation of 55.4 m. The corresponding
slopes vary from 0° to 60° with a mean slope of 2.25° and a standard
deviation of 2.06°. The major land covers include forest, shrubland,
grassland, wetland and barren land. The geography and topography of
the three study areas are shown in Fig. 1.

Data description

Sentinel-1 SAR data

The Sentinel-1 mission, the first of European Space Agency’s five
Copernicus Missions, is a constellation of two polar-orbiting satellites
launched on April 3, 2014 and April 25, 2016 respectively. The C-
band Synthetic Aperture Radar (SAR) operates day and night in dual
polarizations and acquires imagery continuously regardless of
weather with a 6-day revisit at equator 46 (ESA, 2019). In this study,
all available Sentinel-1 SAR C-band time series data in VV and HV
polarizations, acquired in Interferometric Wide Swath (IW) mode,
were collected for the Elephant Hill Fire, Camp Fire and Chuckegg
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Creek Fire sites during 2017, 2018 and 2019 respectively.
Downloaded from the Google Earth Engine (GEE) Platform47, the
Level 1 Ground Range Detected (GRD) products consist of focused
SAR data that has been detected, multi-looked and projected to
ground range using an Earth ellipsoid model. The SAR data were
then terrain corrected converted to decibels (dB) via log scaling.

Reference data

High resolution Worldview-3 post-fire imagery over the Elephant
Hill Fire site was acquired on September 28, 2017 and used to
visually verify the SAR-based burnt area maps. Fieldwork was also
conducted in the Elephant Hill Fire area in July, 2018, one-year after
the wildfire. Ground truth data representing various burn severities
were collected by field inspection and with a drone. Figure 2 shows
various burn severities under different terrain conditions.

To verify and validate the SAR-based mapping results, cloud-free
Sentinel-2 Multispectral Instrument (MSI) imagery before, during,
and after the wildfires were selected in the Elephant Hill Fire in
2017, the Camp Fire in 2018 and the Chuckegg Creek Fire in 2019.
For validation, burnt areas were automatic extracted using pre-fire
and post-fire Normalized Burn Ratio (NBR) and their difference
(denoted as dNBR) using Eqs. (1) and (2)48. For each study area, the
accuracy of the SAR-based final burnt area map was quantitatively
assessed using 20,000 validation points (10,000 points each for burnt
and unburnt areas respectively) randomly selected based on the burnt
area map derived from the post-fire Sentinel-2 imagery. It should be
noted that the randomly selected training and validation data sets are
from the same geographical region. Therefore there is a slight chance
that a few of the validation samples overlap or in close vicinity of the
training samples. This may affect the overall accuracy of the
mapping results. Due to lack of ground truth data during the wildfires
and no Sentinel-2 or Landsat imagery to couple with each SAR
acquisition during the wildfires, the SAR-based progression maps
were visually compared with the burnt area maps that were derived
from Sentinel-2 imagery acquired right after each acquisition date of
the SAR data.

NBR=NIR−SWIR2NIR+SWIR2

NBR=NIR−SWIR2NIR+SWIR2

(1)

dNBR=NBRpre-fire−NBRpost-fire
dNBR=NBRpre-fire−NBRpost-fire

(2)

To better understand the behavior of SAR temporal backscatter
under different conditions, precipitation data over the study areas was
collected. For the Elephant Hill Fire, the precipitation data used is
PERSIANN-CDR, a daily precipitation estimation from remotely
sensed information with artificial neural network-Climate Data
Record, at a resolution of 0.25 arc degrees49,50. For the Camp Fire,
the precipitation data is from the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS), which is a 30 year quasi-
global daily rainfall dataset and it incorporates 0.05° resolution
satellite imagery with in-situ station data51.

Results and Discussion

Sentinel-1 SAR temporal backscatter patterns of burnt and
unburnt vegetation

To better understand the SAR backscatter behaviors of burnt and
unburnt vegetation, several areas of interest (AOI) on SAR time
series representing forest and grassland in similar vegetation (pre-
fire) and topographic conditions (elevation, slope, aspect) were
selected for analysis and comparison of their temporal backscatter
patterns. The SAR backscatter statistics corresponding to several
comparable pairs of AOIs for burnt and unburnt forest and grassland
is presented in Table 1. For each AOI, the location, size and
topographic information as well as their temporal means and standard
deviations of SAR backscatter are listed. The reason why we use
differently sized AOIs for these two fire events is that the terrain of
the Camp Fire is much more complex and locally dynamic than that
of the Elephant Hill Fire. Therefore, the smaller AOIs are more
homogenous and representative.

Fire Event Land Cover AOITopographyC-VH (dB) C-VV (dB)
long. (°) lat. (°)size (m)elevation(m)slope (°)aspect (°)

Elephant Hill
(ASC-64)

forest unburnt 121.43W50.85N300112016.80

burnt 121.35W 50.78N107416.2571−20.17
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Fire Event Land Cover AOI Topography C-VH (dB) C-VV (dB)
long. (°) lat. (°) size (m) elevation(m) slope (°)aspect (°)

grass unburnt 121.38W 50.69N 790 5.12 135−24.11

burnt 121.33W 50.75N 748 5.36 136−26.84

Camp Fire
(ASC-137)

forest unburnt 121.38W 39.73N 100 76911.64

burnt 121.53W 39.79N 729 5.06 108−14.53

grass unburnt 121.76W 39.75N 170 5.68 163−19.11

burnt 121.70W 39.69N 171 3.49 161−19.53

The examples of the SAR temporal backscatter behaviors of burnt
and unburnt forest and grassland, corresponding to the AOIs listed in
Table 1 and shown in Fig. 3. For each pair of the AOIs, the daily
precipitation histograms are also shown in this figure since vegetation
wetness and soil moisture conditions could impact the SAR
backscatter. Figure 3(a,b) show the SAR backscatter variations over
time for forest and grassland respectively in Elephant Hill Fire site
while (c) and (d) display the temporal backscatter variations in the
Camp Fire site. Figure 3(a) shows that, before the wildfire event on
July 6, 2017, the AOIs of burnt and unburnt forest share the same
SAR backscatter patterns, indicating that the forested areas have very
similar vegetation and topographic conditions before the fire. After
July 6th, however, the mean backscatters for both C-VH and C-VV
polarization in the burnt AOI decreased approximately 2–3.5 dBs,
with a larger standard deviation while the SAR mean backscatters in
the unburnt AOI remain rather stable. The temporal trends of C-HVs
and C-VV backscatter are very similar even though C-VV
backscatter coefficients are several dBs higher than that of C-VH.
The precipitation events did not affect the backscatter for either
burnt or unburnt forest as the rain events were not right before the
SAR data acquisitions. Similarly, burnt AOI shares similar
backscatter patterns to unburnt AOI before fire in the forest AOIs of
the Camp Fire site. However, both C-VV and C-VH backscatter
coefficients increased after the fire event, as shown in Fig. 3(c). The
increase in backscatter of burnt forest is likely caused by rain events
immediately before the SAR data acquisitions resulting in higher soil
moisture contents in burnt areas.

Figure 3 

SAR backscatter varies over time in four pairs of unburnt and burnt
AOIs, each of which are with similar terrain and same vegetation
type. SAR backscatter behavior in two comparable. (a) Forest AOIs
in the Elephant Hill (ASC-64). (b) Grass AOIs in the Elephant Hill
(ASC-64). (c) Forest AOIs in the Camp fire (ASC-137). (d) Grass
AOIs in the Camp fire (ASC-137).

 
For the grassland AOIs in the Elephant Hill Fire site, similar
temporal backscatter patterns to forest are observed, as shown in
Fig. 3(b). The mean backscatters of the burnt AOI decreased while
that of unburnt AOI remain relatively stable. Again, the precipitation
events did not affect the SAR backscatter as the rain events were not
right before the SAR data acquisitions. For the grassland AOIs in the
Camp Fire site, as shown in Fig. 3(d), obvious increases in C-VV
backscatters after the start of the wildfire are observed due to rain
events, similar to forest backscatter increase in the Camp Fire site.
Several heavy rain events occurred between Nov. 21 and Nov. 28 of
2018, and VV is more sensitive to the soil moisture than VH in burnt
areas. However, the C-VH backscatter patterns of unburnt and burnt
grassland remain the same after the fire. The reasons for this need
further investigation as C-band radar signature is usually not
significantly influenced by dry grass subject to fire event according
to literature. This observation further confirms the previous findings
that identification of the burnt area for non-forest vegetation (i.e.,
grassland) is not so straightforward.

Sentinel-1 SAR for near real-time wildfire progression
monitoring

Elephant hill fire

The SAR-based wildfire progression maps of the Elephant Hill Fire
are presented in Fig. 4, estimated by different methods, including the
classical log-ratio (logRt)35, the ratio between the logRt and the
corresponding historical stdDev map (kmap) and CNN-based
framework. The first three rows show the estimated change maps,
while the fourth row shows the binary progression maps
corresponding to the burn confidence maps predicted by CNN in the
third row. Row 5, labeled as CNN_mrg, presents the merged
progression maps for each date, produced by accumulating all the
progression maps before a date. To reduce unnecessary noises, the
merging operation was not applied on the first two dates, i.e., July 8
and July 20, 2017. In the last row, CNN_tsc_mrg denotes that a
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simple time series correction (TSC) was applied on the progression
maps in the same orbit before merging them. It is assumed the burnt
area would not disappear in the later progression once it appeared
before, TSC can be used to reduce the noisy pixels in the earlier
progression maps based on the later progression maps. However, with
TSC, the CNN_tsc_mrg is not a near real-time approach any longer
because it depends the future progression maps. For any date in the
Elephant Hill Fire, the TSC was implemented by multiplying it with
the future progression maps in the same orbit.

Figure 4 

SAR-based results by three different methods on the Elephant
fire. logRt is the false color composite with [ΔβVH, ΔβVV, ΔβVH],
while the second row shows the false color composite of kmap with
[kVH, kVV, kVH]. The third row shows the burn confidence map
predicted by CNN (denoted as CNN burnConf), and the fourth row
are the corresponding binary burn map, marked with CNN
burnMap. CNN_mrg is the accumulated burn map before the
considering date, while CNN_tsc_mrg are produced with time series
correction, following the merging operation same as CNN_mrg.

Full size image

To quantitatively assess SAR-based burnt area results, Sentinel-2
dNBR is segmented into a binary map of burnt and unburnt areas and
used as the reference maps together field data and WorldView-3
imagery. 10,000 validation points are randomly selected from burnt
and unburnt areas respectively. Table 2 presents the quantitative
evaluation of SAR-based wildfire progression results for the Elephant
Hill Fire. Among logRt,
kmap, CNN_mrg and CNN_tsc_mrg, CNN_mrg achieves the highest
values in Precision, Recall, OA, Kappa and F1, CNN_tsc_mrg ranks
second, and both of them are much higher than logRt and kmap-
based results. It is worth noting that CNN_tsc_mrg reaches a very
high value in Recall (0.9952), which implies that TSC greatly reduces
the false alarm rate, compared to CNN_mrg’s Recall (0.9336).

Sat. Bands Metho
d

Seg. Precisi
on

Recall OA Kappa F1

S1 VHlogRtOtsu63.34%97.12%80.73%0.61460.7667
VV 59.42

%
93.86

%
77.78

%
0.5553 0.7277

VH kmap 60.92
%
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%
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%
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%
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VH,
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%

94.71
%

89.50
%

0.7899 0.8884

VH,
VV

CNN_
mrg

Otsu 90.
41%
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%

94.
92%

0.8983 0.9467

CNN_t
sc_mr

g

85.89
%

99.
52%

92.74
%

0.8548 0.9221

 
Due to lack of field data and optical images acquired on the same
date as the SAR imagery during the wildfire, the progression maps
are validated visually by overlaying CNN_mrg on the Sentinel-2 false
color composite (R = SWIR2, G = SWIR1, B = SWIR2). For each
map in CNN_mrg_overlay, the Sentinel-2 image with the closest
cloud-free date after the SAR acquisition. Visual observation shows
that there is a high level of agreement between Sentinel-1 SAR
progression map and Sentinel 2 burnt area in the full time series. The
examples of the overlays are presented in Fig. 5.

Figure 5 

Sentinel-1 based wildfire progression maps in the Elephent Hill
(CNN_mrg in transparent red) overlaid on the Sentinel-2 MSI false
color composites (R = SWIR2, G = SWIR1, B = SWIR2). (a) SAR-
July 8 on MSI-July 10. (b) SAR-July 20 on MSI-July 30. (c) SAR-
Aug. 1 on MSI-Aug. 4. (d) SAR-Aug. 8 on MSI-Aug. 11. (e) SAR-
Aug. 21 on MSI-Aug. 22. (f) SAR-Sept. 18 on MSI-Oct. 3. The
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images were generated using Google Earth Engine platform (Map
data: Google, ESA).

Full size image

Camp fire

The SAR-based wildfire progression maps of the Camp Fire are
presented in Fig. 6, estimated by different methods, including logRt
with absolute operation (denoted as logRt_abs), kmap and CNN
burnt Confidence map (CNN burnConf). Compared
with logRt_abs and kmap, we can find that CNN burnConf highlights
the burnt areas very well, that is critical for subsequent segmentation.
The row marked with CNN burnMap shows the corresponding binary
map of CNN burnConf maps with Otsu thresholding52,
and CNN_mrg and CNN_tsc_mrg are produced with similar
procedures for the Elephant Hill Fire. For the Camp Fire,
the logRt_abs is exploited to detect both positive and negative
backscatter changes, due to the fact that there exist both increased
and decreased backscatter changes in the fire related areas. In
the logRt_abs maps, as shown in the first row in Fig. 6, are the false
color composite (R = |ΔβVH|, G = |ΔβVV|, B = |ΔβVH|).

Figure 6 

SAR-based results on the Camp fire. logRt_abs is the false color
composite with [|ΔβVH|, |ΔβVV|, |ΔβVH|], while the second row shows
the false color composite of kmap with [kVH, kVV, kVH]. The third
row shows the burn confidence map predicted by CNN, and the
fourth row lists the corresponding binary burn map, marked with
CNN burnMap. CNN_mrg is the accumulated burn map by keeping
all burn map detected CNN before the considering date,
while CNN_tsc_mrg are produced with time series correction on the
same orbit, following the merging operation same as CNN_mrg. The
bottom row shows the overlayed maps that lay CNN_mrg map over
the S2-based false color map with composite [R = SWIR2, G =
SWIR1, B = SWIR2].

Full size image

In the first four stages, most of the burnt areas are in purple,
indicating that VH backscatter is more sensitive than VV to the
changes caused by the wildfire event, while the white pixels indicate
that VH and VV show similar sensitivity to the changes. However, in
the last four stages, the burnt area appears very different, in green
instead of purple. The green pixels show that VV backscatter are
more sensitive than VH to the fire-induced changes. This is because
several heavy precipitations occurred between Nov. 21 and Nov. 28
of 2018, and VV is more sensitive to the soil moisture than VH in
burnt areas. As shown in the CNN burnConf maps, the first two
stages (a) and (b) indicate that CNN helps enhance the difference
between burnt and unburnt areas, but significant over and under
estimations are observed. As new SAR data comes, the CNN model
is fine-tuned further, then the predicted CNN burnConf maps show
much better contrast between burnt and unburnt pixels than the first
two stages. With Gaussian filtering followed by Otsu
thresholding52, CNN burnConf maps in range [0, 1] are binarized
into CNN burnMap. As expected, the first stage (a) looks rather noisy
and the later stages detect most of the burnt areas with less
noise. CNN_mrg combines all detected burnt areas on different
orbits before current dates, except for the first date, Nov. 11, 2017,
which is too noisy. CNN_tsc_mrg provides non near real-time results
with less false alarm pixels by applying time series correction on the
same orbit. By overlaying Senintel-1 SAR-based progression results
(in transparent red) and Sentinel-2 SWIR composite, the bottom row
demonstrates that there is a certain degree of agreement between
Senintel-1 SAR-based progression maps and Senintel-2 fire scars.
Compared to the visual observations in the Elephant Hill Fire, the
agreement on the Camp Fire is not as good.

Quantitative evaluations of SAR-based wildfire progression results of
the Camp Fire are presented in Table 3. With kmap, C-VV achieves
a much higher value than C-VH in OA, Kappa and F1 score, and
combining C-VV and C-VH can reach a higher accuracy than VV or
VH alone. By combining VH and VV, CNN_mrg achieves an overall
accuracy of 83.58% (Kappa: 0.6716, F1: 0.8139),
and CNN_tsc_mrg reaches a higher Recall value than CNN_mrg, i.e.,
a lower false alarm rate.

Sat. Data Metho
d

Seg. Precisi
on

Recall OA Kappa F1

S1 VH kmap >2 21.82
%

65.13
%

55.07
%

0.1014 0.3269

VV 45.21
%

80.19
%

67.02
%

0.3404 0.5782

VH,
VV

kmap >2 51.17
%

82.11
%

70.01
%

0.4002 0.6305

VH,
VV

CNN_
mrg

Otsu 71.
82%

93.91
%

83.
58%

0.6716 0.8139

CNN_t
sc_mr

g

70.60
%

95.
07%

83.47
%

0.6694 0.8103

Chuckegg creek fire

Figure 7 presents the SAR-based wildfire progression maps of the
Chunkegg Creek Fire, estimated by logRt, kmap and the proposed
CNN-based deep learning framework. Different from the Elephant
Hill Fire and the Camp Fire, Sentinel-1 SAR acquired images every
six days in the same orbit (ASC20) over the Chuckegg Creek Fire, a
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higher imaging frequency. The logRt-based progression maps showed
that the VV and VH backscattering have similar sensitivity to changes
caused by fire, thus the burnt areas appear white. However, they have
very different responses to changes caused by agricultural activities.
While VH increases slightly, VV decreases significantly over the
agricultural areas (in green). Similar to a wildfire event, the
agricultural activities may cause a significant decrease in VV
backscattering, which would result in false alarms. Owning to the fact
that the agricultural fields often have a high standard deviation in the
historical time series, kmap can suppress the agricultural activities-
related changes better than log ratio, as shown in the second row.
Trained with samples from the binarized kmap, the CNN-based
framework can highlight the burnt areas and suppress false alarms
due to agricultural activities, as shown in CNN_burnConf and
CNN_burnMap. CNN_mrg and CNN_tsc_mrg show the merged
results of the burnt areas without or with TSC respectively. The
bottom row shows the visual comparison between optical images and
SAR-based results, which indicate that SAR data has the potential to
detect most of the burnt areas, but some low burn severity areas
without structural changes may be missed.

Figure 7 

SAR-based results on the Chuckegg Creek Fire (2019). logRt is the
false color composite with [ΔβVH, ΔβVV, ΔβVH], while the second row
shows the false color composite of kmap with [kVH, kVV, kVH]. The
third row shows the burn confidence map predicted by CNN, and the
fourth row lists the corresponding binary burn map, marked with
CNN burnMap. CNN_mrg is the accumulated burn map by keeping
all burn map detected CNN before the considering date,
while CNN_tsc_mrg are produced with time series correction on the
same orbit, following the merging operation same as CNN_mrg. The
bottom row shows the overlayed maps that lay CNN_mrg map over
the S2-based false color map with [R = SWIR2, G = SWIR1, B =
SWIR2].

Full size image

Table 4 summarizes the quantitative analysis of the SAR-based
wildfire progression mapping results, and these statistics are based on
10,000 samples randomly selected from burnt areas and unburnt
areas respectively. With kmap, both VH and VV reach a very high
Recall value but a low Precision value, indicating that both of them
have a very low false negative rate and high false positive rate. By
combining VH and VV together, kmap achieves a much higher
precision without a significant decrease in Recall, resulting in the
increase in OA (73.05%), Kappa (0.4609) and F1 (0.6339). By
applying the proposed CNN-based framework using both VH and
VV data, CNN_mrg can achieve a significant improvement in
Precision with a minor decrease (0.3%) in Recall, leading to 88.09%
in OA, 0.7618 in Kappa and 0.8666 in F1 score. By exploiting TSC,
CNN_tsc_mrg can reduce the noisy pixels very well, but the accuracy
decreases slightly.

Sat. Data Metho
d

Seg. Precisi
on

Recall OA Kappa F1

S1 VH kmap >2 29.34
%

99.69
%

64.63
%

0.2925 0.4534

VV 21.38
%

99.21
%

60.61
%

0.2121 0.3518

VH,
VV

kmap >2 46.67
%

98.77
%

73.05
%

0.4609 0.6339

VH,
VV

CNN_
mrg

Otsu 77.
38%

98.47
%

88.
09%

0.7618 0.8666

CNN_t
sc_mr

g

67.09
%

99.
94%

83.53
%

0.6705 0.8028

CONCLUSION

In this paper, we evaluated Senitnel-1 SAR time series for
near real-time wildfire progression monitoring using a novel
and fully automatic deep learning framework based on CNN.
The analysis of SAR temporal backscatter profiles showed
that significant differences between burnt forest and grassland
can be observed in both the Elephant Hill Fire and the Camp
Fire sites (except C-VH over the Camp Fire site). The CNN-
based deep learning framework performed much better than
log-ratio based kmap in detecting burnt areas, achieving a
significant improvement in Kappa over these three study
areas: (0.11 for the Elephant Hill Fire, 0.27 for the Camp Fire
and 0.30 for the Chuckegg Creek Fire, respectively). By fine-
tuning with local data, we demonstrate the proposed CNN
framework is effective in monitoring the progressions of three
large wildfires in different geographic regions in various
topographic conditions. Additional studies are planned to
further demonstrate the transferability of the CNN framework
to other wildfire events via pixel-wise network forward
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propagation. By exploiting all the available SAR data acquired
before the wildfire event to characterize the area in terms of
backscatter variations due to different environmental
conditions, the time series based anomaly detection method is
effective in producing coarse burnt area maps that are
essential for automatic training of the CNN framework. This
research is the first attempt on wildfire progression
monitoring using SAR time series and deep learning in
challenging topographic conditions. The findings demonstrates
that, using a fully automatic deep learning framework,
spaceborne SAR data can play a significant role for real-time
wildfire progression monitoring when the data becomes
available at daily and hourly intervals with the launches of
RADARSAT Constellation Missions and SAR CubeSat
constellations.

Methodology

The main goal of the methodology is to develop a novel and
fully automatic procedure based on a deep learning framework
that utilizes every new Sentinel-1 SAR image acquired during
the wildfire event to monitor the fire progression in near real-
time. When a wildfire occurs, pre-fire SAR dense time series
of the study area are collected from the archive and new SAR
images are acquired in near real-time during the wildfire
event. In particular, the proposed method has two innovative
aspects, one is to exploit all available SAR data acquired
before the wildfire event to characterize the area in terms of
SAR backscatter variations due to different environmental
conditions (e.g., seasonal effect, different land cover, weather
conditions, etc.) while the other is to automatically train an
implicit deep learning framework to estimate the changes in
the SAR images acquired during the wildfire. The
methodology includes four major processing steps. First, log-
ratio of the pre-fire and post-fire SAR images is performed to
detect changes caused by wildfire. Then the coarse binary map
of burnt and unburnt areas is generated using a time series
based anomaly detection technique. Using training samples
automatically generated from the coarse binary change map,
the CNN is trained and fitted to refine the burnt area detection
and to generate the burnt confidence maps. The last step is to
binarize the confidence maps using the Otsu automatic
thresholding approach and to combine the individual wildfire
progression maps progressively to improve their reliability and
consistency. The overview of the methodology is presented in
Fig. 8. In the following sub-sections, a full description of the
different steps is reported.

Figure 8 

CNN-based Online Learning Framework for Near Real-Time
Wildfire Monitoring.

Full size image

Log-ratio based change measurement

To detect changes caused by the wildfire. comparison of pre-
and post-fire SAR images is performed. For each new SAR
image acquired after the start of the wildfire, a pre-fire image
is selected as a master image for each available ascending
(ASC) or descending (DSC) orbit. By applying log-ratio
operator on the master (pre-fire) and slave (after the start of
the fire) image, a change map can be derived for C-VV and C-
VH respectively, and the corresponding log-ratio time series
can be established. The optimal master image is selected
taking into account both minimizing the seasonal effects and
avoiding master images acquired after heavy rain events. Log-
Ratio based change measurement is defined accordingly with
the following formula:

Δβr=10log10(βmrβsr)=10log10(βmr)−
10log10(βsr)

Δβr=10log10(βrmβrs)=10log10(βrm)−10lo
g10(βrs)

(3)

where r ∈ {ASC-μ, DSC-ν} denote the corresponding orbit
direction (ASC or DSC) and relative start orbit number
(μ or ν), and βr is the radar backscattering
value, m and s represent pre-fire (master) and post-fire (slave)
image, respectively. By applying log-ratio on the master and
slave images, the change map Δβr can be derived, which
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estimates the difference degree between master and slave
images. The change map Δβr are subsequently binarized using
the StdDev map as a reference estimation of the regular
oscillation of the SAR backscatter. Hereafter, Δβr and σr are
rewritten as Δβ and σ for convenient and compact
mathematical notation.

Time series based anomaly detection

Based on the pre-fire SAR time series, the corresponding
mean and standard deviation (StdDev) are computed with
respect to every pixel, forming a mean map and a StdDev
map. Over the same study area, the StdDev maps σ are
computed based on the historical SAR time series for ASC
and DSC orbit respectively, including both VH and VV
polarizations. The StdDev maps estimate the normal variance
of SAR backscatter with seasonal changes over time, which
would provide a pixel-wise reference level for different land
cover types in the study area.

σ(i,j)=∑Nt=1(βt(i,j)−β¯(i,j))2N−1
−−−−−−−−−−−−−√

σ(i,j)=∑t=1N(βt(i,j)−β¯(i,j))2N−1

(4)

where β¯β¯ represents the mean image over the available
SAR time series on the same orbit, and the length is denoted
as N, i.e., the total number of available images acquired on the
same orbit.

Ik(i,j)=|Δβ(i,j)|σ(i,j)Ik(i,j)=|Δβ(i,j)|σ(i,j)

(5)

In order to detect the abnormal variance caused by wildfire
events, a k-Map can be computed by dividing σ from |Δβ(i, j)|,
as shown in Eq. 5. The k-map Ik estimates the times that
|Δβ(i, j)| is larger than the corresponding σ for each pixel in
the study area: a higher value in the k-Map means it is
abnormal variation corresponding to a higher probability of
changes.

I(i,j)={1,0,Ik(i,j)≥k0Ik(i,j)<k0
I(i,j)={1,Ik(i,j)≥k00,Ik(i,j)<k0

(6)

As illustrated in Eq. (6), the Ik map can be transformed into a
binary map I with a threshold k0, which means the pixels will
be considered as abnormal ones (i.e., burnt pixels) if they are
larger than the k0 value in the estimated log-ratio map,
otherwise, they will be taken as the normal ones, i.e., unburnt
pixels. In practice, k0 = 2 is a good trade-off between detecting
abnormal changes and suppressing noise. The produced binary
maps are the main input in the next CNN refinement step as
reference data to automatically select the training samples.

Deep learning-based burnt area refinement

As shown in Fig. 8, we use the binary logRt map time series to
select burnt and unburnt samples for training a CNN model to
detect burnt area automatically. By iterating over the available
dates, each image is stacked with the corresponding master
image and StdDev map in the same orbit, and the DEM
products such as elevation, slope and aspects can also be
stacked on them. The same number of training samples are
randomly chosen from the burnt areas and unburnt areas
identified by the log-ratio algorithm with StdDev binarization,
and these training samples are stored into a database, used to
train a CNN model to further refine the burnt areas. In the
testing phase, when the image stack is fed into this CNN
model, the corresponding burnt area mapping will be
generated automatically.

The CNN framework is designed to produce a confidence
map characterized by a bi-modal distribution of burn and un-
burnt pixels. Let F(θ) denotes the learnable deep network for

detecting burnt areas, we can derive the output OliOil of
the first l layers by forward passing patch Pi in network F(θ)
(short for FL(θ), where L is the total number of network
layers), and the forward passing is denoted as ⊗ in Eq. (7).

Oli=Pi⊗Fl(θ)Oil=Pi⊗Fl(θ)

(7)

where Fl(θ) denotes the first l layers of F(θ), and θ collects the
weights and bias of Fl(θ), l = 0, 1, 2, …, L. Specially, the input

layer is taken as layer 0, and O0i=PiOi0=Pi. So, the

relationship between OliOil and Ol−1iOil−1 can be
formulated as:
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Oli=δ(Wl∗Ol−1i+bl)Oil=δ(Wl∗Oil−1+bl)

(8)

where Wl and bl represent weights and bias of l-th layer
in F(θ), respectively, and δ is the ReLU activation function38.
Table 5 lists the CNN architecture used, it has 18 layers of
neural networks, and each convolutional layer is followed by a
ReLU activation (sigmoid for the last layer). The CNN
burnConf map is derived by applying the sigmoid activation
on the output of the last layer, since burnt area detection is
actually a binary classification problem, and the sigmoid
activation is a good choice to scale the predicted confidence
into the range [0, 1].

Layer No. Operation Output
Train Test

0 (input) — 7 × 55 × 55 7 × (w + 54) ×
(h + 54)

1 20@3 × 3Conv
+ ReLU

20 × 53 × 53 20 × (w + 52)
× (h + 52)

2–8 20@7 × 7Conv
+ ReLU

20 × 17 × 17 20 × (w + 16)
× (h + 16)

9–17 20@3 × 3Conv
+ ReLU

20 × 1 × 1 20 × w × h

18 2@1 × 1Conv
+ Sigmoid

2 × 1 × 1 2 × w × h

With randomly sampled data (Pi, yi), a CNN-based non-linear
change indicator F(θ) can be learnt for highlighting the burnt
areas based on the SAR data. The predicted burn confidence

vector y^i∈R2×1y^i∈R2×1 can be derived by

squeezing OLi=Pi⊗F(θ)∈R2×1×1×1
OiL=Pi⊗F(θ)∈R2×1×1×1. Therefore, the loss
function can be formulated as:

ℓ(θ)=1n∑i=1n∥y^i−yi∥22+λ∥θ∥22
ℓ(θ)=1n∑i=1n‖y^i−yi‖22+λ‖θ‖22

(9)

where n is the number of training samples, θ is the learn-able
network parameter over all layers, including weights and bias,
and λ controls the weight decay rate. In our experiment, we
set λ = 0.001. Once trained, the corresponding burn

confidence map can be obtained, which can be used to update
the binary logRt time series for next training. Like this, the
Pseudo label updating can contribute to providing more
reliable ones, but it is not necessary. Moreover, Digital
Elevation Model (DEM) products can be integrated to take
topography into consideration as additional input layers.

CNN BurnConf maps: binarization and time series
merging

The outputs of the CNN refinement are CNN burnConf maps,
where the pixel values are ranging from 0 to 1 and they are
proportional to the probability that each pixel represent a
burnt area (0: unburnt, 1: burnt). The main advantage of using
the proposed CNN framework is that the differences in term
of backscatter variation between burnt and unburnt pixel are
represented by a clear bi-modal distribution (see Fig. 9) with
respect to unimodal distribution of the log-ratio based results
(scaled to [0, 1] by dividing the maximum). Consequently,
the CNN burnConf maps are easy to be binarized using an
Otsu automatic thresholding technique52.

Figure 9 

Comparison among the distribution of CNN
burnConf and logRT maps on the final stage.

Full size image

To produce more reliable and consistent fire progression
maps, the binary wildfire progression maps at different stages
are combined using two different methods. The first method is
for near-real time wildfire progression monitoring and it
simply combines the new wildfire progression map with the
previous ones to generate the latest burnt area map. This
method does not use the later burnt map to improve the results
of the previous ones. This method has been investigated to
highlight the potential of the SAR-based CNN framework for
near real-time wildfire monitoring. The second method is a
post-processing step that uses all the generated binary maps to
update the fire progression maps exploiting the available
multitemporal information. The method reduces the noise
using a gaussian temporal filtering of the produced burnt map
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time series and it can be used to obtain a more reliable
delineation of the fire progression for post-fire analysis (i.e.
calibration of fire progression models).

Data availability

The datasets generated during and/or analysed during the
current study are available from the corresponding author on
reasonable request.
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