

International Journal Of Scientific And University Research Publication

ISSN No 121/320

Listed & Index with **ISSN Directory, Paris**

Multi-Subject Journal

Volum : (13) | Issue : (8) |

INTERNATIONAL JOURNAL OF SCIENTIFIC AND UNIVERSITY RESEARCH PUBLICATION

Research Paper

MOUNTAIN ATMOSPHERICS

Kern E. Kenyon || professeur

The purpose of the work is to examine the effects of compressibility on air properties when a visual bit sloping mountain surface. Previous research of air

air compression effects include the low speed wing and the crests of surface gravity waves propagating in the wind. In both cases, an algebraic expression was obtained for the lift force. When wind blows across a mountain and the assumption is made that a boundary layer of compressed air forms and remains attached to the mountain, a physical-chemical theory predicts that the wind will have no shear and the pressure and density will decrease with increasing altitude at the same rate. Combining Bernoulli's law along streamlines with the cross-stream force balance, pressure gradient equals centrifugal force, and the perfect gas law for air, is the model used here.

Mountain Winds, Compressed الكلمات الر Air, Upward Decreases of Pressure and

Finally, for air as a perfect gas the equation of state is

RTp=pRT

the temperature. T is he gas constant and Rwhere

among Equations (1) - (3) a single first $\rho\rho$ and *u*By eliminating can be obtained *p*order differential equation in

p∂r+2p=0

which has the solution

p=constr2

where evaluation of the constant is coming below in (6).

Comparing (5) and (3) shows that the density has the same general form as the pressure, which is a prediction involving the inverse square of the altitude. Then from (1) it can be inferred that the wind there is no *i.e.*, r above the mountain cannot be a function of uspeed shear in the wind, another prediction.

$p=C-12\rho u2p=C-12\rho u2$

Conserving mass flux across the mountain between a vertical section at the top and a vertical section on the plain in front of the mountain leads to the following form of the constant in (5)

st=p0hr0S

is ρ0ρ0 thewhere the greatest mountain *h*environmental density, is the radius of curvature of the r0r0heightsahoya2hopdainpu2r (2)

is measured from the center of the streamline curvature.rAnd

Consider a mountain range rising up out of a level plain with a horizontal wind field blowing toward it in a two-dimensional configuration. When the moving air interacts with the solid sloping surface of the mountain, it is proposed that there forms a boundary layer attached to the mountain containing compressed air with a higher density than that in the environment. This suggestion is made by analogy with a much smaller scale problem: the compressed air boundary layer on a low speed wing calculated before [1]. Also the lift force which makes crests of the surface gravity waves grow during propagation through the wind has been analyzed [2]. Finally, the lift force acting on equatorial sea level, due to the dynamics of the Trade Wind boundary layers, has been estimated [3].

After the boundary layer characteristics for the mountain are worked through, it turns out that the vertical profiles above the mountain for both pressure and density have the same form: they decrease with increasing altitude as constant times the inverse square of the radius from the center of the arc that approximates the shape of the mountain top.

These results do not fit in with in with what one usually understands by the concept of the atmosphere's scale-height, but that subject has been accompanied by confusion [4].

2. METHOD

مقدمة

On streamlines going over the mountain Bernoulli's law holds

. It is *u* and the flow speed is $\rho\rho$, the density is *p*The pressure is is the same for all streamlines, and *C*assumed that the constant , there will be no significant modification of the dynamics.0 = Cif

Across streamlines for a steady state there is a balance of two opposing forces: the upward centrifugal force, where the streamlines are curved, and a downward pressure gradient S=RTS=RT (7)

is the temperature. T is the gas constant for air and R where

Equation (6) is directly analogous to what was found in working out the lift force on a circular arc wing [1].

Three predictions given above involving the variations with altitude of the wind speed, air pressure and density need to be verified by measurements in the future.

استنتاج

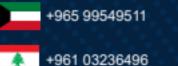
Based on a model of a compressed air boundary layer attached to a mountain with wind blowing over it, predictions are that there is no shear in the wind and that both pressure and density decrease with increase in altitude at the same rate, which is as the inverse square of the radius of the arc that approximates the shape of the mountain top.

ref_str

- Lift on a Low Speed Circular Arc Wing Due to **Kenyon, K.E. (2021)**.1 Air Compression. Natural Science, 13, https://doi.org/10.4236/ns.2021.13300888-90.
 - Wind Wave Growth. Natural Science, 13, **Kenyon, K.E. (2021)**.2 137-139.

https://doi.org/10.4236/ns.2021.135013

- Lift Force at Equatorial Sea Level Due to **Kenyon, K.E. (2021)**.3 Compressed Air Dynamics of the Trade Wind's Boundary Layer. Natural Science, 13, 191-193. https://doi.org/10.4236/ns.2021.136015
- Atmosphere's Scale-Height: A Comment. Kenyon, K.E. (2020).4 European International Journal of Science and Technology, 9, 33-35.



IJSURP Publishing Academy

International Journal Of Scientific And University Research Publication Multi-Subject Journal

Editor.

International Journal Of Scientific And University Research Publication

C +90 5374545296

www.ijsurp.com