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LIFT ON A LOW SPEED CIRCULAR ARC WING DUE TO AIR COMPRESSION

Kern E. Kenyon || Professeur
A fluid flow model consisting of Bernoulli’s law in its normal form, the equation of state of air, and the cross-
stream force balance between a downward pressure gradient and

and the upward centrifugal force on fluid particles moving along curved streamlines over the top circular wing surface involving three equations in
three unknowns (pressure, density and velocity) are solved to show that both density and pressure decrease upward as the inverse square of the
distance from the circle’s center, and the velocity is independent of that dis-tance. These derived characteristics are used to explain the lift force on
the wing in what is believed to be a novel way.  

Slow Flight Lift, Air Compressibility
INTRODUCTION

Conceptually, there are two different ways Bernoulli’s law can lead to
an understanding of increasing the lift on a plane’s wing. One way
normally thought of is to arrange the relative speed of air flow to be
greater on the top surface than on the bottom one, because where the
speed is greatest, the pressure is least [1]. A second way, which I have
never seen advanced, is to have greater air density above than below.
Nobody goes around saying that where the air is heaviest, the
pressure is least. But one could say that as will be shown below.

Compressibility is here explored as the suggested extension of the lift
force calculation for a circular arc wing in a recent study [2], which
contains a separate innovation but has a limitation as well, presumed
to have been stemming mainly from the assumption of constant air
density, and/or possibly the adopted spatial structure of the fluid
velocity. Getting around the limitation motivated the present
discussion.

It is not normal to consider compressibility in fluid flow problems
that involve flow speeds much lower than that of sound. Here, the
evolution unexpectedly came from the study of incompressible fluid
flow structures that have no friction according to the Navier-Stokes
equations in polar coordinates, like circular ones where the velocity is
inversely proportional to the radius [3]. Also, an apparently unrelated
result came from applying compressibility to the tornado [4]. These
investigations and the present one are not burdened by an initial
assumption of irrotationality, upon which so much earlier work on
lift is founded.

Intuition may suggest that if a gas impinges on a rigid surface, a wing
for example, compression may occur at and near that surface even at
low relative speeds. In other words, there could be a boundary layer
of compressed air attached to the wing’s top surface. For some
reason, the text books in fluid dynamics appear to try to steer the
researcher of compressibility toward the high speeds. Shock waves
are interesting, of course.

2. METHOD

Begin by collecting three equations in three variables: pressure p,
velocity u and density ρρ . These same three equations have been
gathered before but for a very different application: the tornado [4].
First Equation (1) is Bernoulli’s equation along a streamline which
does not include the available compressibility term [5]. Second is the
equation of state for air [6]. Third equation is the cross-stream force
balance on fluid particles between a downward pressure force and an
upward centrifugal force for curved streamlines above the circular
arc wing.

An explanation is in order as to why the form of Bernoulli’s equation
selected below does not have a compressibility term in it.
Compressibility across streamlines is deemed more important for this
problem than air density variations along individual streamlines.

p=C−12ρu2p=C−12ρu2  (1)

where C is a constant. Taking C = 0 is not anticipated to significantly
affect the dynamics of the problem.

  p=Sρp=Sρ  (2)

where S = RT and R is the gas constant for air and T is the
temperature assumed constant.

∂p∂r=ρu2r∂p∂r=ρu2r  (3)

where r measures distance from the center of the circle of which the
arc wing’s surface is a part.

Between (1) and (3) the density and velocity can both be eliminated
to get the pressure equation

r∂p∂r+2p=0r∂p∂r+2p=0  (4)

which has the solution

p=constr2p=constr2  (5)

where the constant in the numerator needs to be evaluated. Another
constant could be added to (5) if the constant C in (1) were not set
equal to zero.

From (2) and (5) the density is

ρ=constSr2ρ=constSr2  (6)

So both density and pressure decrease with increase of the radius as
the inverse square. With this knowledge it can be shown from (1) that
the velocity u does not vary with r.

3. DISCUSSION
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Given that the velocityu does not vary with the radius r, suggested by
the above method, but the density ρρ decreases as the inverse square
of r, then the mass flux ρuρu over the top of the wing can be
calculated, because its integral from the top of the wing to infinity
will converge. Then by comparison with an analogous mass flux far
away from the wing one of the constants can be evaluated. In this way
the problem in the earlier study [1] can be avoided, where the air
density was taken constant, the velocity decreased upward inversely
with r, and the mass flux integral diverged.
For example, if the constant air density and relative flow speed away
from the wing are: ρ0ρ0 , U, then in(6) 

const=ρ0hr0Sconst=ρ0hr0S  (7)

where h is the maximum thickness of the wing and r0r0 is the radius
of the circular arc’s surface.

If the Schlieren imaging technique were to be applied to the air
flowing over the top surface of a wing, perhaps density variations of
the air could be detected which would strengthen the proposed lift
concept.

CONCLUSION

According to the fluid flow model for air presented above, it
is concluded that the lift force on a slowly translating circular
arc wing can be related more to a boundary layer of
compressed air attached to the wing’s top surface than to the
usual explanation of a greater mean flow speed above the wing
compared to that below it.
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