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THE FUTURE COMMON ANCESTRY OF ALL PRESENT-DAY HUMANS

Philip M. Service || Department of Biological Sciences
At some future time, each person alive today will be either an ancestor of everyone or an ancestor of no one. If the
global population were unstructured by geography, race,

ace, religion and other factors, the time to future common ancestry for present-day humans would be between 33 and 66 generations, or about 1000
- 2000 years. In a structured population, migration and intermarriage are the necessary conditions for global common ancestry. Simulation of
random and hierarchical migration models, shows that time to future global ancestry is generally less than triple, and often less than twice, that
required for an unstructured population. The models suggest that someone alive today will become a common ancestor of the entire world
population by about 5000 CE, or sooner; and that all current humans who are destined to become global common ancestors will be so by about 8000
CE, or sooner. At which time, everybody then alive will have the exact same genealogical ancestors from the present day.  

Genealogy, Common Ancestry, Human Population Structure, Random
INTRODUCTION

In a random-mating (unstructured) population of constant size N, the
most recent genealogical common ancestor (MRCA) will have lived
log2 N generations previously, or very nearly so [1]. As one
progressively considers earlier generations, before the MRCA, the
number of common ancestors of the current population increases.
Eventually, a previous generation is reached in which everyone then
alive is either a common ancestor of the present population, or is an
ancestor of no one. In other words, everyone currently alive has
identical ancestors in that previous generation, which is referred to as
the most recent identical ancestry (MRIA) generation [1]. Identical
ancestry of present-day individuals is then true for all generations
before the MRIA generation.

Rather than looking backward in time to consider the past common
ancestry of present-day individuals, this paper adopts a forward-
looking perspective. It follows that in a random mating constant
population of size N, one or more present-day individuals will
become common ancestors of the entire population approximately
log2 N generations hence. Furthermore, all currently living individuals
who are destined to become common ancestors will have done so
within about twice that time. Viewed this way, it can be seen that the
genealogical fate of present-day humans is binary: each of us is
destined either for extinction or immortality. If your fate is
extinction, at some future time, and forever after, you will not be an
ancestor of anyone, anywhere—you will have no descendants. If your
fate is genealogical immortality, at some future time and forever
after, you will be an ancestor of everyone in the world, a global
common ancestor. If your destiny is global ancestry, it will not be
fully realized for many generations. How many is the principal topic
of this paper. Nevertheless, whichever your fate, it will most likely be
determined within a few generations. Obviously, if you leave no
children, you become genealogically extinct immediately. On the
other hand, if you have great grandchildren, or great great
grandchildren, it is probable that you are destined for eventual global
common ancestry and genealogical immortality.

Human populations are structured or subdivided by geographic
distance, nationality, ethnicity, race, and other factors that affect
patterns of mating. In structured populations, migration and
intermarriage are the necessary prerequisites for common ancestry
across subpopulations. For true global common ancestry to occur, no
groups or subpopulations can remain reproductively isolated from all
other groups indefinitely. Rohde et al. [2] considered the MRCA and
MRIA times for the current global human population. Their
simulations necessarily required estimates of uncertain
quantities—specifically past human population sizes, migration
routes, and number and frequency of migrants. However, under a
wide variety of assumptions, they concluded that the MRCA of the

current global human population likely lived between 2300 and 3400
years ago: or between approximately 300 and 1400 BCE. The same
analysis [2] put the estimated date of identical ancestry between
about 3000 and 5400 BCE.

The goal of this paper is to put a broad estimate on the time required
for present-day humans to become future global common ancestors.
The approach is simulation. I assume that human population
structure, migration, and intermarriage on a global scale are complex
and beyond accurate realistic simulation with modest computing
facilities. Even if such simulation were feasible, current migration
patterns will not persist indefinitely, and future patterns are
unpredictable on the scale of generations or centuries. Instead, I will
rely mostly on random models that generate complex population
structure and migration patterns by virtue of incorporating a large
number of subpopulations. Given that simulated complexity, I will
show that the precise details of population structure, migration, and
intermarriage are relatively unimportant for times to common
ancestry. Consequently, random migration models may be a useful
guide to the genealogical future of present-day humans.

1.2. Current Human Migration and Intermarriage Patterns

In order to provide context for model evaluation, I review some
recent data on human migration and intermarriage. According to the
Census Bureau, the estimated number of foreign-born persons living
in the U.S. in 2018 was almost 45 million, or about 14% of the
population; with the largest contributions coming from Latin
America, Asia and Europe [3]. The 2011 National Household Survey
reported that more than 20% of Canadians were foreign-born, with
more than 200 geographic origins being represented. The Philippines,
China, and India were the top three sources of newcomers between
2006 and 2011 [4]. In 2019, approximately 2 million Swedes were
foreign-born (about 19% of the total population); they came from at
least 199 different countries, including more than 22,000 who were
born in the U.S. [5]. Between 2016 and 2018, more than 3.4 million
persons received lawful permanent resident status in the U.S. They
were born in more than 200 different countries [6]. In 2019, almost
104,000 foreign-born persons immigrated to Sweden, representing at
least 180 countries. In that same year, almost 48,000 emigrated,
including about 16,000 native-born Swedes [7].

In some Western countries at least, inter-ethnic and interracial
marriage is occurring at a relatively high, and increasing, frequency.
The 2011 National Household Survey reported that 4.6% of all
married or common-law couples in Canada were in “mixed unions”,
defined as unions in which at least one person belonged to a “visible
minority group”, or in which both people belonged to different
minority groups. About two-thirds of mixed unions were composed
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of people born in different countries [8]. The Pew Research Center
found that 17% of all newlyweds in the United States in 2015 had a
spouse of a different race or ethnicity. For all married people, not
just newlyweds, 10% had a spouse of a different race or ethnicity [9].
A similar rate of intermarriage occurs in Britain. The 2011 census
revealed that in England and Wales about 9% of people living with a
partner were in an “inter-ethnic” relationship, an increase from 7%
ten years earlier [10].

These statistics are from a small and selective sample, a few countries
for which data are easily retrieved using search engines. Global data
on migration is available from the United Nations, which estimated
that in 2015, about 3.3% of the world population were immigrants
[11]. Distribution across countries was highly uneven: developed
countries, such as the U.S., Canada, and Sweden, generally have a
higher proportion of immigrants than less developed countries.
Nevertheless, 211 of 234 countries had immigrant populations of at
least 0.5%. Taken as a whole, these data indicate that many people
are moving between countries and that much migration takes place
over long distances on a global scale; and that intermarriage is
common in at least some countries.

For the purposes of this paper, migration and intermarriage are
equivalent. The everyday sense of migration is movement from one
geographic location to another, and migration is necessary to transfer
a genealogy (a set of ancestors) from one geographic subpopulation
to another. In the same way, intermarriage is necessary to transfer
ancestors from one culturally defined subpopulation to another, say
between racial or ethnic groups that happen to live in the same
geographic location. When “migration” appears in the text, it also
generally refers to intermarriage, and vice versa.

2. METHODS

2.1. General Simulation Strategy

A primary consideration was to simulate complicated population
structure and migration patterns, with the goal of achieving sufficient
complexity to warrant extrapolation of results to the global human
population. Complexity was generated by having many
subpopulations, by random assignment of a limited number of
migration paths, and by temporal variation in migration. The practical
limit on total population size, N, was 20,000. For simulations of
common ancestry, the maximum number of subpopulations, S, was
500. Subpopulation sizes were random, with minimum subpopulation
size constrained to one-half the mean. For investigation of the
characteristics of random migration geometries per se, I considered
cases with up to 2000 subpopulations. For the genealogical
simulations, one-step, one-way migration paths were assigned to
randomly chosen subpopulation pairs, without regard to
subpopulation size. Paths were sparse, in the sense that migration
between almost all subpopulation pairs required multiple steps
(generations). Migrants were randomly assigned to one-step paths.
Programs were written in C language, and were compiled and run
with Xcode and MacOS 10.14 (Mojave), on an iMac (model 18.3)
with a 4.2 GHz Intel Core i7 processor and 64 GB memory.

2.2. Genealogical Simulation

Generations were discrete (non-overlapping) and reproductive adult
population size was constant within a given simulation. Mating took
place within subpopulations and each offspring was produced from a
randomly chosen pair of adults (no pair-bonding). Gender was not
assigned and sib mating was permitted (and presumably occurred at
the frequency expected by chance, although the mating scheme

meant that full-sibs would be uncommon). Consequently,
reproductive success (number of adult offspring) was approximately
Poisson-distributed with mean 2.0. Immigrants displaced randomly
selected residents in destination subpopulations; and vacancies
created by emigrants were replaced by “excess” reproduction within
source subpopulations. There was no general requirement that
migration be symmetric or even reciprocal. An immigrant had the
same probability of reproductive success as natives. In other words,
not all immigrants reproduced.

Each simulation started at Generation 0 and progressed until the
second of two events occurred. The first was when one or more
members of the Generation 0 cohort became a common ancestor of
the current generation. That is referred to as the time—number of
generations—to first global common ancestry (FGCA). FGCA is a
forward-looking analog of the rearward-looking MRCA. The second
event occurred when all Generation 0 individuals, who had any
descendants, were ancestors of everyone in the current generation.
That is the time to complete global common ancestry (CGCA) of
Generation 0 individuals, which is an analog of MRIA. (There is a
third event of some interest: the appearance of the first common
descendant (FCD) of all Generation 0 members who have surviving
lineages. In an unstructured population the FCD occurs about midway
between the FGCA and CGCA generations. The number of common
descendants increases rapidly in subsequent generations, until all
members of the population are common descendants of the
Generation 0 cohort. That is equivalent to identical ancestry, and thus
complete common descendancy is the same as complete common
ancestry. The FCD is not considered further in this paper).

In order to illustrate the effect of population subdivision and
facilitate comparisons among different migration geometries, the
FGCA and CGCA times are expressed relative to the times for an
undivided, random-mating population of the same total size. All
results are based on 100 or 50 replicates for each set of simulated
parameters—total population size, number of subpopulations, and
number of migrants, etc.

2.3. Random Migration

The parameters of random migration geometries were: 1) the number
of subpopulations, S; and 2) the one-step path coefficient, k. The
number of randomly-assigned one-step, one-way links between
subpopulation pairs was kS. On average, each subpopulation sent
emigrants directly to k other subpopulations and received immigrants
directly from k subpopulations. There was no requirement that one-
step migration be reciprocal.

Complete global common ancestry requires that genealogical
information be able to move from every subpopulation to every other
subpopulation. When genealogical information can move from
Subpopulation A to Subpopulation D (by one or more steps), A is
“connected” to D. Connections are one-way. The fact that A is
connected to D does not necessarily mean that D is connected to A.
With S subpopulations, there are S(S − 1) possible one-way
connections between subpopulation pairs, by one or more paths of
one or more steps. The “connectivity” of a random migration
geometry is the proportional filling of the S(S − 1) possible one-way
connections. All connections must be present (at least part of the
time) in order for complete global common ancestry to occur.
Connections between subpopulation pairs can be made by one or
more paths, and a path can be direct (one step), or indirect (multi-
step). For two subpopulations, A and D, the path length from A to D
is the path with the fewest number of migration steps; equivalent to
the fewest number of generations required to move genealogical
information from A to D. The length of path D to A, if it exists, is
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not necessarily the same.

The general properties of random migration geometries were
examined by generating 1000 replicates for various combinations of
subpopulation number, S, and one-step path coefficient, k. The
principal properties of interest are connectivity and mean path length
between connected subpopulation pairs. I examined geometries with
up to 2000 subpopulations, for which the number of possible pair-
wise connections between subpopulations, S(S − 1), is almost 4
million.

Complete connectivity of random migration geometries was not
required for the genealogical simulations. Therefore, the kS one-step
paths were re-randomized after every fourth generation of a replicate
in order to ensure that every subpopulation was connected to every
other subpopulation at least part of the time. Also, because migrants
were assigned randomly to the one-step links between subpopulation
pairs, and some links could be “empty”, migrants were re-randomized
every other generation. Periodic alteration of migration routes and
numbers of migrants moving over those routes is desirable given that
we would not expect human migration patterns to persist without
change over many generations.

2.4. Hierarchical Migration

There is no assurance that purely random migration geometries
capture all essential features of human migration and intermarriage
patterns. The alternative is defined models that mimic explicit a
priori patterns. The disadvantage of explicit geometries is that there
are innumerable possibilities, and for every possibility there are
innumerable combinations of parameter values. Furthermore, without
detailed knowledge of actual human patterns, there can be little
confidence that any particular geometry is appropriate. Nevertheless,
one class of models that have intuitive appeal is nested, or
hierarchical, geometries. These seem to be a natural choice when
migration is considered in a geographic context and when migration
between subpopulations declines with distance.

I considered a four-level hierarchy: subpopulations are “cities”, cities
belong to “states”, states belong to “countries”, and countries belong
to “continents”. This approach requires four different one-step path
coefficients, k1 – k4. On average, each city is a source of immigrants
to k1 other cities in the same state: k2 other cities in the same country
but in a different state; k3 other cities in a different country but on
the same continent, and k4 cities on different continents: k1 > k2 > k3
> k4. It seems reasonable to allow direct one-step migration between
all cities in the same state (k1 = S1 − 1, where S1 is the number of
cities in a state). Migration paths were randomly chosen. The number
of migrants moving between cities in the same state (M1), cities in
different states but the same country (M2), and so on, were chosen to
ensure that most migration took place between cities in the same state
and least migration took place between cities on different
continents: M1 > M2 > M3 > M4. Migrants were randomly assigned
to migration paths. There were fewer migrants per generation than
available paths, so that many paths were unpopulated for some
parameter sets. Migration paths were re-randomized every four
generations and migrants re-randomized over paths every two
generations. Several hierarchies were simulated, but in all cases the
total number of cities (subpopulations) was 192. Total population size
was 20,000. City sizes were random, with minimum size set at 50.
The total number of cities was chosen so that the proportion of
immigrants in a city in any generation would be about 10% or less,
depending on overall migration rates. The total number of migrants
and the distribution of migrants within and between different levels
of the hierarchy were also varied. The various parameter sets are
described with the results (Table 2).

3. RESULTS

3.1. Undivided Random-Mating Populations

In order to validate the simulation procedure and provide a
quantitative standard for relative global ancestry times in structured
populations, the case of an undivided population is briefly
considered. The FGCA and CGCA times for various population sizes
are just slightly more than log2N and 2log2N, respectively (Table 1).
These results are essentially the same as Chang obtained for MRCA
and MRIA times by simulation [1]. However, it should be noted that
the FGCA and MRCA, for example, are not strictly the

Table 1. Future common ancestry in an undivided random-
mating population. Each table entry is a summary of 100

replicate simulations.

same. When some Generation 0 individual becomes the FGCA of the
future population, say by Generation 12, it is possible that the MRCA
of Generation 12 could be a descendant of the FGCA who lived
perhaps in Generation 1 or 2. Similarly, the CGCA and MRIA times
are not necessarily the same.

The mean time to extinction of Generation 0 lineages is about 1.55
generations; and the probability of genealogical extinction is just
greater than 20%. Accordingly, the number of Generation 0 members
who eventually become global common ancestors is about 80% of the
population (CGCA Size in Table 1). Mean genealogical extinction
time and probability of extinction are independent of population size
and depend only on the mean and variance of reproductive success
(number of adult offspring). On the other hand, the average time of
last extinction does increase with population size, because larger
populations represent larger samples of lineages.

3.2. Two Subpopulations

Before considering highly structured populations, it will be useful to
investigate the simplest geometry for a divided population: the case
of two equal-sized subpopulations with symmetric, reciprocal
migration. Results are shown for several total population sizes and
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migration rates (Figure 1). There are two striking features of these
simulations. First, very little migration is sufficient to ensure
relatively short times to global common ancestry: even with exchange
of only one migrant every fifth generation, times to global ancestry
are only about 60% longer than for an undivided population. Second,
relative times to global ancestry depend on number of migrants, not
migration rate per se (the proportion of immigrants in a
subpopulation). For example, considering reciprocal exchange of
single migrants per generation, the relative time to FGCA is about
1.18 - 1.19 despite a twenty-fold difference in total population size
(1000 to 20,000), and hence twenty-fold difference in migration rate
(Figure 1(a)). Over the same range of population sizes, the CGCA
times are 1.36 - 1.40 relative to those for an undivided population
(Figure 1(b)). That said, more migrants per generation do reduce
times to global common ancestry: for example with reciprocal
exchange of five individuals per generation (Figure 1).

Figure 1. Relative time (generations) to global ancestry for two
equal-size subpopulations as a function of total population size
and number of reciprocal migrants per generation: (a) FGCA
time; (b) CGCA time. Time is relative to that required for an

undivided population of the same total size. Migration is
symmetric. “1/5 migrants per generation” means that one person
moves from Subpopulation A to Subpopulation B and vice versa
every fifth generation. Similarly, 1/1 means reciprocal exchange
of single individuals each generation, and 5/1 means reciprocal
exchange of five individuals each generation. 100 replicates for

each combination of population size and migration rate.

In principle, a one-time reciprocal exchange of single migrants may
be all that is needed to achieve global common ancestry with two
subpopulations. The requirements are: 1) that complete common
ancestry occur within each subpopulation before migrants are
exchanged, and 2) that both migrants become common ancestors of
their destination subpopulations. In that case, with two
subpopulations of size N/2, the minimum time to CGCA is
approximately 4 log2(N/2), or four generations less than twice the
time required for an undivided population of size N. (To be slightly
more precise, at the time of reciprocal exchange, each migrant must
be a common descendant of all Generation 0 members with surviving
lineages (provided that none of those lineages becomes extinct after

the one-time exchange). In that case, the minimum time to CGCA
could be less than 4log2(N/2)).

3.3. Characteristics of Random Migration Geometries

Over the range of subpopulation numbers investigated (50 - 2000),
and for k ≥ 2, connectivity is essentially constant for a given value
of k—that is, connectivity is practically independent of number of
subpopulations (Figure 2(a)). This is a striking and perhaps counter-
intuitive result. Notably, for values of

Figure 2. (a) Proportion of subpopulation pairs that are
connected by migration, as a function of subpopulation number
and the one-step path coefficient, k. For S subpopulations, there
are S(S – 1) pairs when direction of migration is specified; (b)

Mean shortest path length between all connected subpopulation
pairs; (c) Longest minimum path length between all connected

subpopulation pairs. Means of 1000 replicates for each
combination of S and k.

k ≥ 4, connectivity approaches 1.0 regardless of subpopulation
number. In other words, it is possible for genealogical information to
disperse globally even when each subpopulation is directly connected
by migration to only a handful of other subpopulations. Note that
for S = 2000 subpopulations, the number of possible pairwise
connections is nearly 4 million when direction is specified, but
with k = 4, only 8000 (=kS) are one-step. Even when each
subpopulation sends migrants directly to only two other
subpopulations on average (k = 2), about 64% of subpopulation pairs
are connected—mostly by multi-step pathways. The anomalous path-
length results for k = 1 (Figure 2(b), Figure 2(c)) would seem to be a
consequence of the fact that when one-step paths are very sparse,
relatively many complete paths between subpopulation pairs are only
one step. Thus, complete path length is biased downward.

For constant k, mean path length increases with number of
subpopulations, as might be expected, although the increase is
generally rather modest. With k = 4, for example, mean path length
increases by a factor of less than two over a forty-fold increase in
subpopulation number (Figure 2(b)). For k ≥ 2, path length is a linear
function of log2 S, with slope dependent on k. Thus, the predicted
mean path length between connected subpopulations for k = 6
and S = 5000 is only about 4.96 steps (verified by simulation) and
only about 5.35 steps for S = 10,000 subpopulations (unverified).
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Rather than assume constant k, it might be more realistic to think
that k increases with number of subpopulations: as the global
population becomes structured into more and smaller groups, each
subpopulation will be connected to more other subpopulations by one-
step migration. If that is so, mean path length between pairs of
subpopulations may remain relatively constant with increasing
number of subpopulations. For example, with S = 100 and k = 3,
average path length between subpopulations is about 4.1 steps. Mean
path length remains essentially unchanged for (S = 200, k = 4), (S =
500, k = 5), (S = 1000, k = 6), and (S = 2000, k = 7) (Figure 2(b),
some data not shown). Roughly speaking, as the number of
subpopulations doubles, each subpopulation must send emigrants to
one additional subpopulation, and receive immigrants from one
additional subpopulation, in order for mean path length between all
connected subpopulation pairs to remain constant.

3.4. Time to Common Ancestry with Random Migration
Geometries

Times to future common ancestry were examined for a global
population size of 20,000, and 50 - 500 subpopulations. Thus, mean
subpopulation sizes varied from 400 to 40. The one-step path
coefficient, k, varied between one and six. Migration occurred every
generation, and, unless otherwise noted, one-step migration paths
were re-randomized after every four generations within a replicate,
and migrants were re-randomized over paths every other generation.
Re-randomizations ensured that all subpopulations were sources and
destinations of migrants for at least some generations—a requirement
for simulations to proceed to CGCA.

If the number of migrants per generation is constrained to be equal to
the number of one-step paths between subpopulations (M = kS),
times to common ancestry show little dependence on subpopulation
number, and in fact appear to decline at the largest subpopulation
numbers (for k > 2, Figure 3); despite the fact that mean path length
increases with subpopulation number and constant k (Figure 2(b)).
This perhaps counter-intuitive result is probably due to the fact that
the total number of migrants increased with subpopulation number.
For k = 4 and S = 50, for example, the number of migrants per
generation (M = kS) was only 200, whereas for S = 500 there were
2000 migrants (corresponding to global per-generation migration
rates of 1% and 10%, respectively). Additionally, as the number of
subpopulations increases, and subpopulation size decreases, progress
toward “local” complete common ancestry will occur more quickly
within subpopulations. It is noteworthy that even when the one-step
path coefficient, k, is only 1.0, common ancestry times appear to be
largely insensitive to subpopulation number provided that migration
paths are re-randomized every other generation (Figure 3).

If the number of migrants is constrained to be constant regardless of
number of subpopulations, then more subpopulations means longer
times to common ancestry, as expected (Figure 4(a), Figure 4(b)).
However, the increase in common ancestry time is relatively modest:
for a 10-fold increase in subpopulation

Figure 3. Relative time (generations) to common ancestry for
random migration models when global number of migrants per

generation increases with subpopulation number (=kS), N =
20,000. (a) First global common ancestor (FGCA); (b) Complete

global common ancestry (CGCA). Migration paths were re-
randomized every four generations, and migrants randomized

over paths every two generations; except for simulations
with k = 1*, when re-randomizations occurred every two and one

generation(s), respectively. Each data point is the mean of 50
replicate simulations.

number, the increase in time to common ancestry is only about
100%, or less (Figure 4(a), Figure 4(b)). When subpopulation number
is held constant, more migration reduces common ancestry times,
also as expected (Figure 4(c)). Again, however, the effect is not
strong, particularly once the number of migrants per generation is
four or more times the number of subpopulations.

Taken together, the results shown in Figure 3 and Figure 4 reinforce
the earlier observation (in the two-subpopulation case) that low
numbers of migrants are generally sufficient to ensure relatively short
times to global common ancestry. For example, with total population
size N = 20,000 and 100 migrants per generation, the global per
generation migration rate is 0.5%. For 100 subpopulations, with k =
4, fewer than one-fourth of the 400 one-step migration paths will
actually have migrants moving along them during any generation (for
the case of 100 migrants). Nevertheless, relative times to common
ancestry are less than 3.0 (Figure 4(c)). When the global migration
rate is 400 per generation (2%) and there are 200 subpopulations
(Figure 4(a)), or when the global migration rate is 1000 per
generation (5%) and there are 500 subpopulations (Figure 4(b)),
relative times to common ancestry are only about twice that of an
undivided population (with k = 4 in both cases). Increased one-step
connectedness (larger values of k) reduced times to global common
ancestry, as expected (Figure 3). However, it is noteworthy that even
with very low connectedness, such as k = 2, relative times to common
ancestry never exceeded 2.4 for the range of subpopulation numbers
simulated; and for k > 2, common ancestry times were 2.0 or less (at
least when number of migrants per generation was kS, Figure 3). (As
a practical matter, if the number of migrants per generation is much
less than the number of subpopulations, global common ancestry
cannot be achieved in a reasonable time—even when migrants are re-
randomized over one-step paths every other generation).

The probability of eventual common ancestry was unaffected by
population structure. In particular, with random reproductive success
and constant population size, about 80% of Generation 0 members
became global common ancestors, the same as for an unstructured
population. Subpopulation size did not affect the probability of
common ancestry. Generation 0 individuals in subpopulations that
were sources of large numbers of emigrants had a slightly increased
probability of becoming common ancestors. Systematic
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Figure 4. A. Relative time (generations) to common ancestry and
mean path length as functions of subpopulation number with

constant global migration rate: N = 20,000, k = 4, migrants per
generation = 400; (b) Same as (a) but 1000 migrants per

generation; (c) Common ancestry times as a function of number
of migrants per generation with constant number of

subpopulations: N = 20,000, k = 4, S = 100 subpopulations.
Common ancestry data points are means of 50 replicates, path

lengths are means of 1000 replicates.

testing was not carried out; and the effect was not large and not
always statistically significant in the few cases examined (data not
shown). Constant subpopulation size likely explains the effect of
emigration: individuals lost to emigration were replaced by “excess”
reproduction. Thus, average reproductive success (number of adult
offspring) would have been slightly elevated in subpopulations that
were sources of large numbers of emigrants, particularly if those
same subpopulations received relatively few immigrants.

3.5. Hierarchical Migration

Times to global common ancestry for hierarchical geometries appear
to be somewhat longer than for “flat” geometries with a similar
number of subpopulations and overall migration rate, however the
differences are not large and the details can matter (Table 2). Higher
migration rate tended to shorten times to common ancestry (sets 1
and 3 vs. set 2). However, reducing total migration by a factor of two
did not

Table 2. Parameter sets and results for hierarchical migration
geometries. Each results entry is a mean of 50 replicate

simulations.

substantially alter common ancestry times when long distance
migration was increased (set 4 vs. set 2). When the number of
continents was greater and the number of cities per state less, times to
common ancestry increased (set 5 vs. set 6). The longest relative time
to FGCA (2.76) was obtained with set 5, the one with four continents
and only four cities per state. For all sets, the migration rate between
continents was 0.05% - 0.1% per generation, and the migration rate
between countries on the same continent was 0.1% - 0.4%. These
rates seem broadly consistent with what we know about current
human migration patterns: 0.1% of the global human population is
about 8 million. Set 3 had the greatest difference between short and
long-distance migration rates (M1/M4 = 100) but also the highest
overall migration rate (10%). For that set, the relative FGCA and
CGCA times were 1.72 and 1.60, respectively. In contrast, the
parameters for set 4 were the same as for set 3, except that overall
migration was reduced five-fold to 2% by drastically reducing
migration between cities within the same state and country (M1
and M2). Nevertheless, the relative FGCA and CGCA times
increased to only 2.40 and 2.17 (Table 2).

Overall connectivity was high (generally 100%) for the hierarchical
models: that is, all possible subpopulation (city) pairs were connected
by migration paths (Table 2). Also mean and longest minimum path
lengths were relatively short. That is probably due to the fact that
each city was connected by one step paths to all or most other cities
in the same state and to several cities in the same country.

4. DISCUSSION

4.1. Do We Need to Know the Details of Human Population
Structure?

Human populations are structured along numerous dimensions that
result in patterns of assortative mating: obvious axes include
nationality, geographic proximity, race, ethnicity, socio-economic
class, and religion, to name a few. Furthermore, everybody belongs
simultaneously to several groups that might be bases for assortative
mating: for example American, Californian, Black, Protestant,
politically conservative. Thus, it is not obvious how many
“subpopulations” or groups are appropriate for modeling migration
and intermarriage in the human population. It is important, therefore,
that times to common ancestry in the models presented here are
generally insensitive to subpopulation number. That is especially true
for random migration geometries when global migration rate is
allowed to increase with subpopulation number: in that case, common
ancestry times are practically independent of subpopulation number
(Figure 3).

Does migration rate increase with subpopulation number? Arguably,
yes: if, for example, a geographic region is divided into more and
more smaller governmental jurisdictions (countries, provinces, states,
etc.), it seems reasonable that movement between jurisdictions will
become more likely. Similarly, as human populations become more
finely divided along culturally-defined dimensions (ethnicity,
religion, class, etc.), it seems reasonable that intermarriage will be
more common. In other words, whether or not an individual is
classified as a “migrant” will depend to a considerable extent on the
way that we define “subpopulations”. The more fine-grained and
numerous subpopulations become, the more likely that individuals
will be migrants. If that is true, then the details of global human
population structure may be relatively unimportant for times to future
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common ancestry.

The results for hierarchical migration geometries do not greatly alter
the conclusions derived from random models. Human migration
patterns are no doubt influenced by immigration laws and national
boundaries. However, it is not clear that migration within many
countries is likely to be restricted in a hierarchical sense.
International migrants may be more likely to move to nearby
countries, or at least to countries on the same continent. But,
currently, there is much intercontinental migration. In other words, to
the extent that human migration is hierarchical, the hierarchy may be
relatively flat: something more like set 6 than set 5 (Table 2). Or
perhaps better characterized with just two levels—countries and
continents.

4.2. Do We Need to Know Migration and Intermarriage Rates?

Not only is the appropriate number of human subpopulations
unknown, the details of migration and intermarriage patterns between
subpopulations may often be obscure. I have already argued that
times to common ancestry are broadly insensitive to migration rates,
and very low migration rates are sufficient to produce relative
common ancestry times of 2.0 or less (Figure 3 and Figure 4). In the
random migration models simulated here, the one-step path
coefficient, k, represents the average number of one-step, one-way
connections between subpopulations. That is, on average, each
subpopulation receives migrants directly from k other subpopulations
and sends migrants to k subpopulations. It is not obvious what value
of k is appropriate for modeling human migration and intermarriage.
It is fortunate, therefore, that at least in random migration
geometries, the value of k has little effect on times to common
ancestry, provided that k ≥ 4 (Figure 3). That is perhaps because
when k ≥ 4, overall connectivity between all possible subpopulation
pairs (by single or multi-step pathways) approaches 1.0, even with
2000 subpopulations (Figure 2(a)); and mean path length (migration
steps) between subpopulations is generally less than 5.0 (Figure 2(b)).
In other words, if random models are a useful guide, modest values
of k ensure that genealogical information can move from every
subpopulation to every other subpopulation, and the required number
of migration steps (generations) is likely to be five or less.

Again, the hierarchical models do not substantially alter the picture. It
is true that the overall one-step path coefficients, ktotal, were greater
than for the purely random geometries (Table 2). That is justified on
the grounds that one-step migration would be expected between all
cities in the same state, and perhaps between all cities in the same
country (although k2 was never set at that high level). For a similar
reason, overall migration rates were higher in the hierarchical
models, but most of that migration took place within countries. More
to the point, within the group of hierarchical simulations, substantial
differences in migration rates did not have large effects on relative
times to common ancestry.

4.3. Relaxing Model Assumptions

4.3.1. Increasing or Decreasing Global Population

As already noted, in an undivided random-mating population of
constant size, N, the time to FGCA is very nearly log2 N generations.
But, log2 N generations is just the time when an “average” Generation
0 member is expected to have N descendants. Formally, at
Generation T, an “average” individual will have 2T descendants, and
2log2 N = N. In other words, the number of generations required for
some member of Generation 0 to become an FGCA is the number of
generations required for an “average” individual to have N living

descendants. If a similar logic applies to growing and declining
populations—an FGCA will occur when an average member of
Generation 0 has NT descendants—it is easily shown that the FGCA
time in an undivided population, growing or shrinking at a constant
rate, is log2 N0 generations, where N0 is the starting population size.
Similar reasoning suggests that the CGCA time will be about 2
log2 N0 generations. Assuming that population subdivision does not
alter this line of reasoning, the present results apply to growing and
declining populations, with the number of generations to common
ancestry depending on starting population size.

4.3.2. Effect of Inbreeding

Inbreeding decreases the number of distinct ancestors in previous
generations [12], and also decreases the number of distinct
descendants in future generations. Thus the general effect of
inbreeding is to increase times to common ancestry. As already
noted, inbreeding was permitted in these simulations. However,
because mating was promiscuous, full-sibs were likely to be rare, as
were full first-cousins, and so on. Levels of inbreeding, therefore,
were probably low, and may have been less than typical for human
populations [13]. Thus the GCA times in these simulations may be
underestimates, although probably by not more than ten percent, or
less [12].

4.3.3. Non-Poisson Distribution of Reproductive Success

Reproductive success—number of adult offspring—in these
simulations is a Poisson-distributed random variable with mean and
variance 2.0. As a result, approximately 13.5% of individuals in
every generation have no children. If the proportion of childless
people were increased, the average number of offspring among those
individuals who do have children would increase (assuming
population size remains constant). Consequently, descendant (and
ancestor) trees would grow more rapidly and GCA times would
decrease. The opposite happens if fewer people are childless. In the
extreme case, everybody has two children and variance in
reproductive success is zero. In that case, times to complete common
ancestry can increase by as much as 38% (at least in an unstructured
population) [14]. A global survey of mean and variance of number of
adult offspring in human populations is beyond the scope of this
paper. However, a 2014 survey indicated that 16.7% of women aged
45 - 50 in the United States were childless [15]. That suggests that
Poisson-distributed reproduction in these simulations is a reasonable
approximation to human populations.

CONCLUSION

HOW LONG UNTIL PRESENT-DAY HUMANS
BECOME GLOBAL COMMON ANCESTORS?

On a global scale, current human migration appears substantial
and universal (at the level of countries). There is, of course, no
assurance that current patterns and rates of international
migration will persist indefinitely. It is fortunate, therefore,
that the models presented here argue strongly that the details
of population structure and migration are simply not very
important over a wide range of values for migration rates,
number of subpopulations, average number of one-step
connections, and hierarchical arrangement of subpopulations.
Except for extreme cases—very low migrant numbers or very
small one-step path coefficients (k ≤ 2)—the times to global
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common ancestry are typically less than twice those for an
undivided population, and almost always less than triple
(Figure 3 and Figure 4; Table 2). For purely random models,
longer times to common ancestry occur when the global
number of migrants per generation is about the same as, or
less than, the number of subpopulations; and when each
subpopulation sends or receives migrants from only one other
subpopulation. For hierarchical models, longer times occur
when the number of higher level subdivisions (continents) is
relatively large compared to the number of lower level
subdivisions (cities). The available evidence suggests that the
current human population is not characterized by such
extremes. Therefore, it seems likely that people alive today
(equivalent to Generation 0 in my simulations) will become
common ancestors of the future global population, and
achieve genealogical immortality, sooner rather than later.

I will hazard a rough estimate that the time will be on the
order of twice to triple that required for an unstructured,
random-mating global population. In round numbers, the
current human population is about 8 billion. If it were
unstructured, the time until at least one present-day person
became a common ancestor of the future global population
would be about log2 8 billion, or approximately 33,
generations. The time to complete global common ancestry of
all people alive today, whose genealogies do not go extinct,
would be about twice that, or about 66 generations. These
times are, respectively, about 1000 and 2000 years, if
generation time is 30 years. If we double and triple these
estimates, the suggested time for initial global common
ancestry for someone alive today will be about 2000 - 3000
years; and the time to complete global common ancestry for
present-day humans will be about 4000 - 6000 years. The
usual caveat applies: true global common ancestry requires
that no group remain indefinitely isolated from the rest of
humanity.

If these times seem impossibly short, then it may help to
realize that an “average” person destined for genealogical
immortality will have about 266, or more than 7 ×
1019 descendants living in the year 4000 CE (assuming
constant global population size). That number grows to 2200 (or
1.6 × 1060) by year 8000 CE. (Obviously, if the future global
population is only 8 billion, it would be impossible for
someone to have 266 or 2200 unique concurrently-living
descendants. It is more correct to say that there will be
266 genealogical paths linking an “average” person today to his
or her (several billion) descendants living 66 generations
hence.) Coincidentally, these proposed times to future
common ancestry are very similar to the ages of the most
recent common ancestor (MRCA) and most recent identical
ancestor cohort (MRIA) of the current global human
population [2 , 12]. Until recently, historically speaking, the
global human population was much smaller than it is now. On
the other hand, long-distance migration was also much more
difficult, if not impossible, for much of the last six thousand
years. Regardless of the exact time required, eventually
everyone in the world will be a descendant of just about
everybody alive today, famous or not, who has a few adult
grandchildren or great grandchildren. The more adult children
that you have, the more likely that you will become a global

common ancestor. Your chances might be increased somewhat
if you and your near-term descendants are members of groups
or subpopulations with higher than average population growth
and emigration rates. Little else likely matters.
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