International ID for Author Rights and protection Intellectual Property


Why Publish Your Article in IJSURP


Public Research


Articles from over
100 Countries

More bullets for PISTOL: linear and cyclic siloxane reporter probes for quantitative 1H MR oximetry

Authore(s) : Shubhangi Agarwal || These authors contributed equally.

Volume : (16), Issue : 210, June - 2019

Abstract : Tissue oximetry can assist in diagnosis and prognosis of many diseases and enable personalized therapy. Previously, we reported the ability of hexamethyldisiloxane (HUDSON) for accurate measurements of tissue oxygen tension (PO2) using Proton Imaging of Siloxanes to map Tissue Oxygenation Levels (PISTOL) magnetic resonance imaging. Here we report the feasibility of several commercially available linear and cyclic siloxanes (molecular weight 162–410 g/mol) as PISTOL-based oxygen reporters by characterizing their calibration constants. Further, field and temperature dependence of PO2 calibration curves of HMDSO, octamethyltrisiloxane (OMTSO) and polydimethylsiloxane (PDMSO) were also studied. The spin-lattice relaxation rate R1 of all siloxanes studied here exhibited a linear relationship with oxygenation (R1 = A′ + B′*PO2) at all temperatures and field strengths evaluated here. The sensitivity index η( = B′/A′) decreased with increasing molecular weight with values ranged from 4.7 × 10−3–11.6 × 10−3 torr−1 at 4.7 T. No substantial change in the anoxic relaxation rate and a slight decrease in PO2 sensitivity was observed at higher magnetic fields of 7 T and 9.4 T for HMDSO and OMTSO. Temperature dependence of calibration curves for HMDSO, OMTSO and PDMSO was small and simulated errors in pO2 measurement were 1–2 torr/°C. In summary, we have demonstrated the feasibility of various linear and cyclic siloxanes as PO2-reporters for PISTOL-based oximetry.

Keywords :This work was supported by NIH 1R21CA132096-01A1, a National Science Foundation CAREER Award #1351992 and NIH UF1NS107676 grants.

Article: Download PDF Journal DOI : 311/714

Cite This Article:

More bullets for PISTOL

Vol.I (16), Issue.I 210

Article No : 10041

Number of Downloads : 101

References :
Kulkarni, A. C., Kuppusamy, P. & Parinandi, N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 9, 1717–1730, https://doi.org/10.1089/ars.2007.1724(2007). Tatum, J. L. et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer... More
  • Kulkarni, A. C., Kuppusamy, P. & Parinandi, N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 9, 1717–1730, https://doi.org/10.1089/ars.2007.1724(2007).
  • Tatum, J. L. et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International journal of radiation biology 82, 699–757, https://doi.org/10.1080/09553000601002324(2006).
  • Gordillo, G. M. & Sen, C. K. Revisiting the essential role of oxygen in wound healing. Am J Surg 186, 259–263 (2003).
  • Ruthenborg, R. J., Ban, J. J., Wazir, A., Takeda, N. & Kim, J. W. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol Cells 37, 637–643, https://doi.org/10.14348/molcells.2014.0150(2014).
  • Townley-Tilson, W. H., Pi, X. & Xie, L. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease. Oxid Med Cell Longev 2015, 676893, https://doi.org/10.1155/2015/676893(2015).
  • Giordano, F. J. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115, 500–508, https://doi.org/10.1172/JCI24408(2005).
  • Yin, J. et al. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab 296, E333–342, https://doi.org/10.1152/ajpendo.90760.2008(2009).
  • Solaini, G., Baracca, A., Lenaz, G. & Sgarbi, G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797, 1171 1177, https://doi.org/10.1016/j.bbabio.2010.02.011(2010).
  • Ban, J. J., Ruthenborg, R. J., Cho, K. W. & Kim, J. W. Regulation of obesity and insulin resistance by hypoxia-inducible factors. Hypoxia (Auckl) 2, 171–183, https://doi.org/10.2147/HP.S68771(2014).
  • Manley, G. et al. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg 136, 1118–1123 (2001).
  • Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15, 1239–1253, https://doi.org/10.1111/j.1582-4934.2011.01258.x(2011).
  • Li, S. Y., Fu, Z. J. & Lo, A. C. Hypoxia-induced oxidative stress in ischemic retinopathy. Oxid Med Cell Longev 2012, 426769, https://doi.org/10.1155/2012/426769(2012).
  • Araneda, O. F. & Tuesta, M. Lung oxidative damage by hypoxia. Oxid Med Cell Longev 2012, 856918, https://doi.org/10.1155/2012/856918(2012).
  • Bhattacharyya, A., Chattopadhyay, R., Mitra, S. & Crowe, S. E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94, 329–354, https://doi.org/10.1152/physrev.00040.2012(2014).
  • Kim, H. A., Rhim, T. & Lee, M. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy. Adv Drug Deliv Rev 63, 678–687, https://doi.org/10.1016/j.addr.2011.01.003(2011).
  • Ozsurekci, Y. & Aykac, K. Oxidative Stress Related Diseases in Newborns. Oxid Med Cell Longev 2016, 2768365, https://doi.org/10.1155/2016/2768365(2016).
  • Eales, K. L., Hollinshead, K. E. & Tennant, D. A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5, e190, https://doi.org/10.1038/oncsis.2015.50(2016).
  • Fiaschi, T. & Chiarugi, P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012, 762825, https://doi.org/10.1155/2012/762825(2012).
  • Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute 93, 266–276 (2001).
  • Brown, J. M. Tumor hypoxia in cancer therapy. Methods Enzymol 435, 297–321, https://doi.org/10.1016/S0076-6879(07)35015-5(2007).
  • Shannon, A. M., Bouchier-Hayes, D. J., Condron, C. M. & Toomey, D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer treatment reviews 29, 297–307 (2003).
  • Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nature reviews. Cancer 11, 393–410, https://doi.org/10.1038/nrc3064(2011).
  • Griffiths, J. R. & Robinson, S. P. The OxyLite: a fibre-optic oxygen sensor. Br J Radiol 72, 627–630, https://doi.org/10.1259/bjr.72.859.10624317(1999).
  • Murkin, J. M. & Arango, M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(Suppl 1), i3–13, https://doi.org/10.1093/bja/aep299(2009).
  • Takahashi, E. et al. In vivo oxygen imaging using green fluorescent protein. Am J Physiol Cell Physiol 291, C781–787, https://doi.org/10.1152/ajpcell.00067.2006(2006).
  • Young, R. J. & Moller, A. Immunohistochemical detection of tumour hypoxia. Methods Mol Biol 611, 151–159, https://doi.org/10.1007/978-1-60327-345-9_12(2010).
  • Lewis, J. S., McCarthy, D. W., McCarthy, T. J., Fujibayashi, Y. & Welch, M. J. Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40, 177–183 (1999).
  • Aime, S. et al. High sensitivity lanthanide (III) based probes for MR-medical imaging. Coordin. Chem Rev 250, 1562–1579, https://doi.org/10.1016/j.ccr.2006.03.015(2006).
  • Varia, M. A. et al. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 71, 270–277, https://doi.org/10.1006/gyno.1998.5163(1998).
  • Evans, S. M. et al. Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60, 2018–2024 (2000).
  • Tamura, M., Hazeki, O., Nioka, S. & Chance, B. In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopies. Annu Rev Physiol 51, 813–834, https://doi.org/10.1146/annurev.ph.51.030189.004121(1989).
  • Baudelet, C. & Gallez, B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 48, 980–986, https://doi.org/10.1002/mrm.10318(2002).
  • Ding, Y. et al. Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies. J Magn Reson Imaging 38, 1230–1236, https://doi.org/10.1002/jmri.24006(2013).
  • O’Connor, J. P. et al. Oxygen-Enhanced MRI Accurately Identifies, Quantifies, and Maps Tumor Hypoxia in Preclinical Cancer Models. Cancer Res 76, 787–795, https://doi.org/10.1158/0008-5472.CAN-15-2062(2016).
  • Gulaka, P. K. et al. GdDO3NI, a nitroimidazole-based T1 MRI contrast agent for imaging tumor hypoxia in vivo. Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry 19, 271–279, https://doi.org/10.1007/s00775-013-1058-5(2014).
  • Ahmad, R. & Kuppusamy, P. Theory, instrumentation, and applications of electron paramagnetic resonance oximetry. Chem Rev 110, 3212–3236, https://doi.org/10.1021/cr900396q(2010).
  • Mason, R. P., Rodbumrung, W. & Antich, P. P. Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR Biomed 9, 125–134 (1996).
  • Kodibagkar, V. D., Cui, W., Merritt, M. E. & Mason, R. P. Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn Reson Med 55, 743–748, https://doi.org/10.1002/mrm.20826(2006).
  • Kodibagkar, V. D., Wang, X., Pacheco-Torres, J., Gulaka, P. & Mason, R. P. Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. NMR Biomed 21, 899–907, https://doi.org/10.1002/nbm.1279(2008).
  • Swartz, H. M. et al. Advances in probes and methods for clinical EPR oximetry. Adv Exp Med Biol 812, 73–79, https://doi.org/10.1007/978-1-4939-0620-8_10(2014).
  • Dardzinski, B. J. & Sotak, C. H. Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of perfluoro-15-crown-5-ether. Magn Reson Med 32, 88–97 (1994).
  • Bourke, V. A. et al. Correlation of radiation response with tumor oxygenation in the Dunning prostate R3327-AT1 tumor. Int J Radiat Oncol Biol Phys 67, 1179–1186, https://doi.org/10.1016/j.ijrobp.2006.11.037(2007).
  • Zhao, D., Constantinescu, A., Chang, C. H., Hahn, E. W. & Mason, R. P. Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327-HI tumor. Radiat Res 159, 621–631 (2003).
  • Gulaka, P. K. et al. Hexamethyldisiloxane-based nanoprobes for (1) H MRI oximetry. NMR Biomed 24, 1226–1234, https://doi.org/10.1002/nbm.1678(2011).
  • Menon, J. U. et al. Dual-modality, dual-functional nanoprobes for cellular and molecular imaging. Theranostics 2, 1199–1207, https://doi.org/10.7150/thno.4812(2012).
  • Addington, C. P. et al. Siloxane Nanoprobes for Labeling and Dual Modality Functional Imaging of Neural Stem Cells. Annals of biomedical engineering 44, 816–827, https://doi.org/10.1007/s10439-015-1514-1(2016).
  • Mojsiewicz-Pienkowska, K., Jamrogiewicz, M., Szymkowska, K. & Krenczkowska, D. Direct Human Contact with Siloxanes (Silicones) - Safety or Risk Part 1. Characteristics of Siloxanes (Silicones). Front Pharmacol 7 (132), https://doi.org/10.3389/Fphar.2016.00132(2016).
  • Jamrogiewicz, Z., Mojsiewicz-Pienkowska, K., Jachowska, D. & Lukasiak, J. Study on the dependence of longitudinal relaxation time in H-1 NMR method on the structure of polydimethylsiloxanes and optimization of spectra registration parameters. Polimery-W 50, 737–741, https://doi.org/10.14314/polimery.2005.737(2005).
  • Kodibagkar, V. D., Wang, X. & Mason, R. P. Physical principles of quantitative nuclear magnetic resonance oximetry. Front Biosci 13, 1371–1384, doi:2768 [pii] (2008).
  • Hamza, M. A., Serratrice, G., Stebe, M. J. & Delpuech, J. J. Fluorocarbons as Oxygen Carriers.2. An Nmr-Study of Partially or Totally Fluorinated Alkanes and Alkenes. J Magn Reson 42, 227–241 (1981).
  • Woessner, D. E. Proton Spin-Lattice Relaxation of N-Paraffins in Solution. J Chem Phys 41, 84-&, https://doi.org/10.1063/1.1725655(1964).
  • Korb, J. P. & Bryant, R. G. Magnetic field dependence of proton spin-lattice relaxation times. Magn Reson Med 48, 21–26, https://doi.org/10.1002/mrm.10185(2002).
  • Bottomley, P. A., Foster, T. H., Argersinger, R. E. & Pfeifer, L. M. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11, 425–448, https://doi.org/10.1118/1.595535(1984).
  • Sharma, S. K., Lowe, K. C. & Davis, S. S. Emulsification Methods for Perfluorochemicals. Drug Development and Industrial Pharmacy 14, 2371–2376 (1988).
  • Vidya Shankar, R. & Kodibagkar, V. D. A faster PISTOL for (1) H MR-based quantitative tissue oximetry. NMR Biomed 32, e4076, https://doi.org/10.1002/nbm.4076(2019).
  • Cassidy, S. L. et al. Hexamethyldisiloxane: A 13-week subchronic whole-body vapor inhalation toxicity study in Fischer 344 rats. Int J Toxicol 20, 391–399, https://doi.org/10.1080/109158101753333677(2001).
  • Dobrev, I. D. et al. Closed-chamber inhalation pharmacokinetic studies with hexamethyldisiloxane in the rat. Inhal Toxicol 15, 589–617, https://doi.org/10.1080/08958370390205083(2003).
  • Parent, R. A. Acute Toxicity Data Submissions. Int J Toxicol 19, 331–373 (2000).
 ... Less

WordPress Lightbox Plugin