Updates

International ID for Author Rights and protection Intellectual Property

Updates

Why Publish Your Article in IJSURP

36572
Manuscript
submission

9855
Public Research
Papers

26.94
Acceptance
Ratio

100
Articles from over
100 Countries

Antimicrobials Use in Aquaculture and their Public Health Impact

Volume : (13), Issue : 205, March - 2018

Abstract : Diseases are one of these primary limiting factors. Bacterial diseases are responsible for heavy mortality in both wild and cultured  fish.  Antibiotics used to control such infection and misuse as well as other  sources  of antimicrobials as using chicken manure or adoption of integrating fish system may emerge the development and spread of antimicrobial resistant bacteria and resistance genes and occurrence of antimicrobial residues. All that may induce a negative impact on human, fish and the environment. Aquaculture has become the fastest growing sector of food production in the world. Despite the encouraging trends, several constraints have negative impact on the growth of aquaculture. Therefore, strict measures, legislations and regulations for the use of antimicrobials in aquaculture should be developed and implemented, especially in developing countries, to avoid such negative impacts in human, fish, animals and environment. These consequences, in human, include increased number of infections, increased frequency of treatment failures and increased severity of infection that result a prolonged duration of illness, increased frequency of bloodstream infections, increased hospitalization, and increased mortality.

Keywords :Antimicrobials; Aquaculture; Disease resistance; Human health.  

Article: Download PDF Journal DOI : 301/704

Cite This Article:

their Public Health Impact

Vol.I (13), Issue.I 205



Article No : 10069


Number of Downloads : 101


References :
  1. Kapetsky J M (1995) A first look at the potential condritsution of warmwater fish farming to food security in Africa.
  2. Kitessa SM, Abeywardena M, Wijesundera C, Nichols PD (2014) DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients 6: 2035-2058.
  3. http://www.fao.org/fishery/sofia/en
  4. Subasinghe  RP,   Bondad-Reantaso    MG,   McGladdery   SE   (2005) Aquaculture  Development,  Health  and  Wealth.  Fisheries Dept,  FAO, Rome, Italy.
  5. Teuber  M  (1999)  Spread  of  antibiotic   resistance  with  foodborne pathogens. Cellular and Molecular Life Sciences 56: 755-763.
  6. Van den Bogaard AE, Willems R, London  N, Top  J, Stobberingh EE (2002)  Antibiotic  resistance  of  fecal enterococci  in  poultry,  poultry farmers  and  poultry  slaughterers.  Journal  of  Antimicrobial Chemotherapy 49: 497-505.
  7. Smith DL, Johnson JA, Harris  AD, Furuno  JP, Perencevich JG, et al., (2003) Assessing risks for a pre-emergent  pathogen: virginiamycin use and the emergence of streptogramin resistance in Enterococcus faecium. Lancet Infectious Diseases 3: 241-249.
  8. Nicole K (2008) Veterinary  antibiotics  in  the  aquatic  and  terrestrial Environment. Ecological Indicators 8: 1-13.
  9. Levi SB (2001) Antibiotic  resistance: Consequences  of Inaction.  Clin Infect Dis 33: S124-S129.
  10. McKellar QA (1998) Antimicrobial resistance: a veterinary perspective. BMJ 317: 610-611.
  11. Walton   JR  (1983)  Modes  of  action   of  growth  promoting   agents. Veterinary Research Communications 7: 17.
  12. Mamun KZ, Shears P (1993) The Prevalence and genetics of resistance to commonly used antimicrobial agents in faecal enterobacteriaceae from children in Bangladesh. Epidemol Infect 110: 447-458.
  13. Schmidt  AS Bruun  MS, Dalsgaard  I,  Pedersen  K, Larsen  JL (2000) Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Appl Environ Microbiol 66: 4908-4915.
  14. Miranda  CD, Zemelman R (2001) Antibiotic resistant bacteria in fish from the Concepción Bay, Chile. Mar Pollut Bull 42: 1096-1102.
  15. Anon E (1999)  Market  Information 1998. Animal Health Products Association, Bangkok, Thailand.
  16. DePaola A, Peeler  JT,  Rodrick  GE  (1995)  Effect of oxytetracyclinemedicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. Appl Environ Microbiol 61: 2335-2340.
  17. http://who.int/foodsafety/publications/micro/en/report.pdf.
  18. Tapiador   DD,  Henderson   HF,  Delmendo   HN,   Tsuitsuy  H   (1976) Freshwater fisheries and  aquaculture  in  China.  Food  and  Agriculture Organization of the United Nations, Rome, Italy.
  19. Mitchell SK, James ML (2008) Risks to  aquatic  organisms  posed  by human pharmaceutical use. Sci Total Environ 389: 329-339.
  20. Little DC,  Edwards  P  (1999) Alternative  strategies  for  livestock-fish integration with emphasis on Asia. Ambio 28: 118-124.
  21. AldermanDJ, Hastings TS (1998) Antibiotic use in aquaculture: development of antibiotic resistance—potential for consumer health risks. Int J Food Sci Technol 33: 139-155.
  22. Samuelsen OB, Torsvik V and  Ervik A (1992) Long-range changes in oxytetracycline concentration  and bacterial resistance towards oxytetracycline in  a fish farm  sediment  after a medication.  Sci Total Environ 114: 25-36.
  23. Sandaa RA, Torsvik VL, Goksøyr J (1992) Transferable drug resistance in bacteria from fish-farm sediments. Can J Microbiol 38: 1061-1065.
  24. Jacobsen P, Berglind L (1988) Persistence of oxytetracycline in sediments from fish farms. Aquaculture 70: 365-370.
  25. http://who.int/foodsafety/publications/micro/en/report.pdf.
  26. Ole EH, Hilde K, Kari G, Collignon P, Iddya K, et al., (2009) Human Health  Consequences of Use of Antimicrobial Agents in Aquaculture. Clinical Infectious Diseases 49: 1248-1253.
  27. Felipe CC, Henry PG, Alexandra T, Larisa I, Humberto D, et al., (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology 15: 1917-1942.
  28. Estefanía MA, Beatriz GS, Carlos A, Cristina C, Rosa DC, et al., (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology 13: 15.
  29. Aly SM (2009) Probiotics  and  aquaculture:  A review. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition  and  Natural Resources 4: 1-16.


WordPress Lightbox Plugin