Cystatin C Peptide Effects on B16F10 Melanoma Cells
Authore(s) : Mathieu Hill || Department of Biochemistry
Volume : (10), Issue : (9), June - 2020
Abstract :
Background: Metastasis is a major problem for effective therapy of cancer. Small cysteine protease inhibitors, cystatins have been shown to be anti-metastatic for a number of different cancers. We have identified a small peptide of cystatin which exhibits anti-cancer properties for B16 melanoma cells in vitro. Methods: B16 melanoma cells were measured for growth, proliferation, migration, and apoptosis in the presence and absence of cystatin peptide. Results: The cystatin peptide reduced melanoma cell growth, proliferation, migration, and increased apoptosis in melanoma cells in culture. Conclusion: Cystatin peptide exhibits anti-cancer effects on highly metastatic B16 melanoma cells in culture.
Keywords :Cystatin, Peptide, Melanoma, Metastasis
Article: Download PDF Journal DOI : 102/369
Cite This Article:
Cystatin C Peptide Effects on B16F10 Melanoma Cells
Vol.I (10), Issue.I (9)
Article No : 11325
Number of Downloads : 100
References :
1. Ochieng, J. and Chaudhuri, G. (2010) Cystatin Superfamily. Journal of Health Care for the Poor and Underserved, 21, 51-70. https://doi.org/10.1353/hpu.0.0257
2. Petushkova, A.I., Savvateeva, L.V., Korolev, D.O. and Zamyatnin Jr., A.A. (2019) Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors. Biochemistry (Moscow), 84, 746-761.... More
1. Ochieng, J. and Chaudhuri, G. (2010) Cystatin Superfamily. Journal of Health Care for the Poor and Underserved, 21, 51-70. https://doi.org/10.1353/hpu.0.0257
2. Petushkova, A.I., Savvateeva, L.V., Korolev, D.O. and Zamyatnin Jr., A.A. (2019) Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors. Biochemistry (Moscow), 84, 746-761. https://doi.org/10.1134/S000629791907006X
3. Cox, J.L., Sexton, P.S., Green, T.J. and Darmani, N.A. (1999) Inhibition of B16 Melanoma Metastasis by Overexpression of the Cysteine Proteinase Inhibitor Cystatin C. Melanoma Research, 9, 369-74. https://doi.org/10.1097/00008390-199908000-00005
4. Kopitz, C., Anton, M., Gansbacher, B. and Krüger, A. (2005) Reduction of Experimental Human Fibrosarcoma Lung Metastasis in Mice by Adenovirus-Mediated Cystatin C Overexpression in the Host. Cancer Research, 65, 8608-8612. https://doi.org/10.1158/0008-5472.CAN-05-1572
5. Alvarez-Diaz, S., Valle, N., García, J.M., Peña, C., Freije, J.M.P. and Quesada, V. (2009) Cystatin D Is a Candidate Tumor Suppressor Gene Induced by Vitamin D in Human Colon Cancer Cells. Journal of Clinical Investigation, 119, 2343-2358. https://doi.org/10.1172/JCI37205
6. Sokol, J.P., Neil, J.R, Schiemann, B.J. and Schiemann, W.P (2005) The Use of Cystatin C to Inhibit Epithelial-Mesenchymal Transition and Morphological Transformation Stimulated by Transforming Growth Factor-Beta. Breast Cancer Research, 7, Article No. R844. https://doi.org/10.1186/bcr1312
7. Ervin, H. and Cox, J.L. (2005) Late Stage Inhibition of Hematogenous Melanoma Metastasis by Cystatin C Over-Expression. Cancer Cell International, 5, Article No. 14. https://doi.org/10.1186/1475-2867-5-14
8. McIntire, S.a.J.C. (2015) The Effect of Cystatin C Construct Clones on B16F10 in Vitro Cell Behavior. Journal of Molecular Biochemistry, 5, 4-11.
9. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G. and Prochiantz, A. (1996) Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-Independent. Journal of Biological Chemistry, 271, 18188-18193. https://doi.org/10.1074/jbc.271.30.18188
10. Porstmann, T., Ternynck, T. and Avrameas, S. (1985) Quantitation of 5-Bromo- 2-Deoxyuridine Incorporation into DNA: An Enzyme Immunoassay for the Assessment of the Lymphoid Cell Proliferative Response. Journal of Immunological Methods, 82, 169-179. https://doi.org/10.1016/0022-1759(85)90236-4
11. Shang, H-S., Chang, C.-H., Chou, Y.-R., Yeh, M.-Y., Au, M.-K., Lu, H.-F., et al. (2016) Curcumin Causes DNA Damage and Affects Associated Protein Expression in HeLa Human Cervical Cancer Cells. Oncology Reports, 36, 2207-2215. https://doi.org/10.3892/or.2016.5002
12. Dissanayake, S.K., Olkhanud, P.B., O’Connell, M.P., Carter, A., French, A.D., Camilli, T.C., et al. (2008) Wnt5A Regulates Expression of Tumor-Associated Antigens in Melanoma via Changes in Signal Transducers and Activators of Transcription 3 Phosphorylation. Cancer Research, 68, 10205-10214.
13. Chen, X.Y. and Rotenberg, S.A. (2010) PhosphoMARCKS Drives Motility of Mouse Melanoma Cells. Cellular Signalling, 22, 1097-1103. https://doi.org/10.1016/j.cellsig.2010.03.003
14. Ruczynski, J., Wierzbicki, P.M., Kogut-Wierzbicka, M., Mucha, P., Siedlecka-Kroplewska, K. and Rekowski, P. (2014) Cell-Penetrating Peptides as a Promising Tool for Delivery of Various Molecules into the Cells. Folia Histochemica ET Cytobiologica, 52, 257-269. https://doi.org/10.5603/FHC.a2014.0034
15. Raucher, D. and Ryu, J.S. (2015) Cell-Penetrating Peptides: Strategies for Anticancer Treatment. Trends in Molecular Medicine, 21, 560-570. https://doi.org/10.1016/j.molmed.2015.06.005
16. Lambert, A.W., Pattabiraman, D.R. and Weinberg, R.A. (2017) Emerging Biological Principles of Metastasis. Cell, 168, 670-691. https://doi.org/10.1016/j.cell.2016.11.037
17. Sullivan, R.M., Stone, M., Marshall, J.F., Uberall, F. and Rotenberg, S.A. (2000) Photo-Induced Inactivation of Protein Kinase Calpha by Dequalinium Inhibits Motility of Murine Melanoma Cells. Molecular Pharmacology, 58, 729-737. https://doi.org/10.1124/mol.58.4.729
18. Ziemba, B.P. and Falke, J.J. (2018) A PKC-MARCKS-PI3K Regulatory Module Links Ca2+ and PIP3 Signals at the Leading Edge of Polarized Macrophages. PLoS ONE, 13, e0196678. https://doi.org/10.1371/journal.pone.0196678
19. Li, W., Zhang, J.C., Flechner, L., Hyun, T., Yam, A., Franke, T.F., et al. (1999) Protein kinase C-α Overexpression Stimulates Akt Activity and Suppresses Apoptosis Induced by Interleukin 3 Withdrawal. Oncogene, 18, 6564-6572. https://doi.org/10.1038/sj.onc.1203065
20. Chen, C.H., Thai, P., Yoneda, K., Adler, K.B., Yang, P.-C. and Wu, R. (2014) A Peptide That Inhibits Function of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) Reduces Lung Cancer Metastasis. Oncogene, 33, 3696-706. https://doi.org/10.1038/onc.2013.336
21. Kim, J., Thorne, S.H., Sun, L., Huang, B. and Mochly-Rosen, D. (2011) Sustained Inhibition of PKCα Reduces Intravasation and Lung Seeding during Mammary Tumor Metastasis in an in Vivo Mouse Model. Oncogene, 30, 323-333. https://doi.org/10.1038/onc.2010.415
... Less
1. Ochieng, J. and Chaudhuri, G. (2010) Cystatin Superfamily. Journal of Health Care for the Poor and Underserved, 21, 51-70. https://doi.org/10.1353/hpu.0.0257 |
2. Petushkova, A.I., Savvateeva, L.V., Korolev, D.O. and Zamyatnin Jr., A.A. (2019) Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors. Biochemistry (Moscow), 84, 746-761. https://doi.org/10.1134/S000629791907006X |
3. Cox, J.L., Sexton, P.S., Green, T.J. and Darmani, N.A. (1999) Inhibition of B16 Melanoma Metastasis by Overexpression of the Cysteine Proteinase Inhibitor Cystatin C. Melanoma Research, 9, 369-74. https://doi.org/10.1097/00008390-199908000-00005 |
4. Kopitz, C., Anton, M., Gansbacher, B. and Krüger, A. (2005) Reduction of Experimental Human Fibrosarcoma Lung Metastasis in Mice by Adenovirus-Mediated Cystatin C Overexpression in the Host. Cancer Research, 65, 8608-8612. https://doi.org/10.1158/0008-5472.CAN-05-1572 |
5. Alvarez-Diaz, S., Valle, N., García, J.M., Peña, C., Freije, J.M.P. and Quesada, V. (2009) Cystatin D Is a Candidate Tumor Suppressor Gene Induced by Vitamin D in Human Colon Cancer Cells. Journal of Clinical Investigation, 119, 2343-2358. https://doi.org/10.1172/JCI37205 |
6. Sokol, J.P., Neil, J.R, Schiemann, B.J. and Schiemann, W.P (2005) The Use of Cystatin C to Inhibit Epithelial-Mesenchymal Transition and Morphological Transformation Stimulated by Transforming Growth Factor-Beta. Breast Cancer Research, 7, Article No. R844. https://doi.org/10.1186/bcr1312 |
7. Ervin, H. and Cox, J.L. (2005) Late Stage Inhibition of Hematogenous Melanoma Metastasis by Cystatin C Over-Expression. Cancer Cell International, 5, Article No. 14. https://doi.org/10.1186/1475-2867-5-14 |
8. McIntire, S.a.J.C. (2015) The Effect of Cystatin C Construct Clones on B16F10 in Vitro Cell Behavior. Journal of Molecular Biochemistry, 5, 4-11. |
9. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G. and Prochiantz, A. (1996) Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-Independent. Journal of Biological Chemistry, 271, 18188-18193. https://doi.org/10.1074/jbc.271.30.18188 |
10. Porstmann, T., Ternynck, T. and Avrameas, S. (1985) Quantitation of 5-Bromo- 2-Deoxyuridine Incorporation into DNA: An Enzyme Immunoassay for the Assessment of the Lymphoid Cell Proliferative Response. Journal of Immunological Methods, 82, 169-179. https://doi.org/10.1016/0022-1759(85)90236-4 |
11. Shang, H-S., Chang, C.-H., Chou, Y.-R., Yeh, M.-Y., Au, M.-K., Lu, H.-F., et al. (2016) Curcumin Causes DNA Damage and Affects Associated Protein Expression in HeLa Human Cervical Cancer Cells. Oncology Reports, 36, 2207-2215. https://doi.org/10.3892/or.2016.5002 |
12. Dissanayake, S.K., Olkhanud, P.B., O’Connell, M.P., Carter, A., French, A.D., Camilli, T.C., et al. (2008) Wnt5A Regulates Expression of Tumor-Associated Antigens in Melanoma via Changes in Signal Transducers and Activators of Transcription 3 Phosphorylation. Cancer Research, 68, 10205-10214. |
13. Chen, X.Y. and Rotenberg, S.A. (2010) PhosphoMARCKS Drives Motility of Mouse Melanoma Cells. Cellular Signalling, 22, 1097-1103. https://doi.org/10.1016/j.cellsig.2010.03.003 |
14. Ruczynski, J., Wierzbicki, P.M., Kogut-Wierzbicka, M., Mucha, P., Siedlecka-Kroplewska, K. and Rekowski, P. (2014) Cell-Penetrating Peptides as a Promising Tool for Delivery of Various Molecules into the Cells. Folia Histochemica ET Cytobiologica, 52, 257-269. https://doi.org/10.5603/FHC.a2014.0034 |
15. Raucher, D. and Ryu, J.S. (2015) Cell-Penetrating Peptides: Strategies for Anticancer Treatment. Trends in Molecular Medicine, 21, 560-570. https://doi.org/10.1016/j.molmed.2015.06.005 |
16. Lambert, A.W., Pattabiraman, D.R. and Weinberg, R.A. (2017) Emerging Biological Principles of Metastasis. Cell, 168, 670-691. https://doi.org/10.1016/j.cell.2016.11.037 |
17. Sullivan, R.M., Stone, M., Marshall, J.F., Uberall, F. and Rotenberg, S.A. (2000) Photo-Induced Inactivation of Protein Kinase Calpha by Dequalinium Inhibits Motility of Murine Melanoma Cells. Molecular Pharmacology, 58, 729-737. https://doi.org/10.1124/mol.58.4.729 |
18. Ziemba, B.P. and Falke, J.J. (2018) A PKC-MARCKS-PI3K Regulatory Module Links Ca2+ and PIP3 Signals at the Leading Edge of Polarized Macrophages. PLoS ONE, 13, e0196678. https://doi.org/10.1371/journal.pone.0196678 |
19. Li, W., Zhang, J.C., Flechner, L., Hyun, T., Yam, A., Franke, T.F., et al. (1999) Protein kinase C-α Overexpression Stimulates Akt Activity and Suppresses Apoptosis Induced by Interleukin 3 Withdrawal. Oncogene, 18, 6564-6572. https://doi.org/10.1038/sj.onc.1203065 |
20. Chen, C.H., Thai, P., Yoneda, K., Adler, K.B., Yang, P.-C. and Wu, R. (2014) A Peptide That Inhibits Function of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) Reduces Lung Cancer Metastasis. Oncogene, 33, 3696-706. https://doi.org/10.1038/onc.2013.336 |
21. Kim, J., Thorne, S.H., Sun, L., Huang, B. and Mochly-Rosen, D. (2011) Sustained Inhibition of PKCα Reduces Intravasation and Lung Seeding during Mammary Tumor Metastasis in an in Vivo Mouse Model. Oncogene, 30, 323-333. https://doi.org/10.1038/onc.2010.415 |