
Fundamental Laws of Nature and Picture of the World
Authore(s) : Vyacheslav Mikhailovich Somsikov || Al-Farabi Kazakh National University
Volume : (11), Issue : (10), January - 2020
Abstract : The question of constructing an evolutionary picture of the world based on the results obtained by extending classical mechanics is considered. The expansion of mechanics arose as a result of taking into account the role of the structure of bodies in their dynamics. It is shown that such an extension leads to the possibility of combining branches of physics, in particular, to the substantiation of the laws of thermodynamics, statistical physics, kinetics within the framework of the laws of classical mechanics. It turned out that, according to the laws of classical mechanics, matter is infinitely divisible and can be represented by an infinite hierarchical structure from simple to complex. The expansion showed the existence of universal principles connecting the laws of the upper rung of the hierarchical ladder of matter with the laws of the lower rung. It is considered how they lead to the possibility of constructing a picture of the world based on the fundamental laws of nature.
Keywords :Determinism, Evolution, The Word’s Picture
Article: Download PDF Journal DOI : 125/540
Cite This Article:
Fundamental Laws of Nature and Picture of the World
Vol.I (11), Issue.I (10)
Article No : 10254
Number of Downloads : 100
References :
· Alexeyeva, L. A. (2009). Newton’s Laws for a Biquaternionic Model of Electro-Gravimagnetic Fields, Charges, Currents, and Their Interactions. Journal of Physical Mathematics, 1, Article ID: S090604. https://doi.org/10.4303/jpm/S090604
· Baimbetov, N. F., & Ramazanov, T. S. (1998). On the Formation of Ordered Structures in a Nonideal Plasma. FNTP, 1, 490-500.
· Baumgarten,... More
· Alexeyeva, L. A. (2009). Newton’s Laws for a Biquaternionic Model of Electro-Gravimagnetic Fields, Charges, Currents, and Their Interactions. Journal of Physical Mathematics, 1, Article ID: S090604. https://doi.org/10.4303/jpm/S090604
· Baimbetov, N. F., & Ramazanov, T. S. (1998). On the Formation of Ordered Structures in a Nonideal Plasma. FNTP, 1, 490-500.
· Baumgarten, C. (2017). The Final Theory of Physics—A Tautology? arXiv:1702.00301v1 [physics.gen-ph] 25 Jan 2017.
· Belinsky, A. V. (2003). Quantum Nonlocality and the Absence of a Priori Values of Measured Quantities in Experiments with Photons. Physics-Uspekhi, 46, 877.
https://doi.org/10.1070/PU2003v046n08ABEH001393
· Geizenberg, V. (1968). Planck’s Opening and the Basic Philosophical Problems of the Nuclear Theory. UFN, 2, 163-175.
· Geizenberg, V. (1989). Physics and Philosophy. A Part and Whole. Moscow: Sci. Press.
· Goldstein, G. (1975). Classical Mechanics. Moscow: Sci. Press.
· Hooft, G. W. (2017). Free Will in the Theory of Everything. arXiv:1709.02874v1 [quant-ph] 8 Sep.
· Inwagen, P., & Nozick, R., (2021). The Probabilistic Argument for Why Anything Exists at All Examined. https://thinkingdeeply.medium.com/the-probabilistic-argument-for-why-anything-exists-at-all-examined-van-inwagen-nozick-6fd7f209d11d
· Knyazeva, E. N., & Kurdyumov, S. P. (2005). Foundations of Synergetic. Synergetic Worldview. Moscow: Kom Kniga.
· Lanczos, K. (1965). Variational Principles of Mechanics. Moscow: Mir.
· Landau, L. D., & Lifshits, E. M. (1973). Mechanics. Moscow: Sci. Press.
· Landau, L. D., & Lifshits, E. M. (1976). Statistical Physics. Moscow: Sci. Press.
https://doi.org/10.1007/978-3-642-97294-2
· Landau, L. D., & Lifshits, E. M. (1989). Quantum Mechanics. Moscow: Sci. Press.
· Levis, D. (1986). On the Plurality of Worlds. Oxford: Basil, Blackwell.
· Loskutov, Mikhailov A.Yu., A.S. (1990). Introduction to Synergetics. Moscow: Sci. Press.
· Mac Voy, K. (1967). Symmetry Groups in Physics. UFN, 91, 121-150.
· Milgrom, M. A. (1983). Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. Astrophysics Journal, 1, 365-370.
https://doi.org/10.1086/161130
· Nelson, D. L., & Cox, M. M. (2017). Lehninger Principles of Biochemistry. Amazon.Com.
· Nicolis, G., & Prigogine, I. (1990). Exploring Complexity. Moscow: Mir Press.
· Ramazanov, T. S., Dzhumagulova, K. N., Jumabekov A. N., & Dosbolayev M. K. (2008). Structural Properties of Dusty Plasma in Direct Current and Radio Frequency Gas Discharges. Physics of Plasmas, 15, 053704. https://doi.org/10.1063/1.2918336
· Rumer, Yu., & Ryvkin, M. S. (1977). Thermodynamics Stat. Physics and Kinetics. Moscow: Sci. Press.
· Shirazi, A. N. (2020). Heisenberg’s Equality of in Equivalents Problem. arXiv:2003.06517v1 [physics.hist-ph]
· Somsikov, V. M. (1983). Solar Terminator and Atmospheric Dynamics. Flma-Ata. Nauka: Alma-Ata. Sci. Press.
· Somsikov, V. M. (2007). Problems of Evolution of Open Systems. PEOS, 9, 5-16.
· Somsikov, V. M. (2010). On the Principles of Constructing the Mechanics of Structured Particles Based on the Mechanics of a Material Point. PEOS, 2, 3-17.
· Somsikov, V. M. (2015). The Dynamical Entropy. International Journal of Sciences, 4, 30-36. https://doi.org/10.18483/ijSci.712
· Somsikov, V. M. (2016). Transition from the Mechanics of Material Points to the Mechanics of Structured Particles. Modern Physics Letters B, 4, 1-11.
· Somsikov, V. M. (2019). The Evolution and Breaking Symmetry in the Physics. In 13th Chaotic Modeling and Simulation International Conference (pp. 777-787). Florence: Springer.
· Somsikov, V. M. (2020). Deterministic Irreversibility Mechanism and Basic Element of Matter. In C. Skiadas, & Y. Dimotikalis (Eds.), 12th Chaotic Modeling and Simulation International Conference, Springer Proceedings in Complexity (pp. 245-256). Cham: Springer. https://doi.org/10.1007/978-3-030-39515-5_20
· Somsikov, V. M. (2021). Foundations of the Physics of Evolution. Almaty: KazNU.
· Somsikov, V. M., & Azarenko, S. N. (2019). Determinism in Physics and Cognoscibility of a Picture of the World. Open Journal of Philosophy, 9, 265-280. https://doi.org/10.4236/ojpp.2019.93018
· Somsikov, V. M., & Troitsky, B. V. (1975). Generation of Disturbances in the Atmosphere When the Solar Terminator Passes through It. Geomagnetism and Aeron, 15, 856-860.
· Somsikov, V. М. (2017). Extension of the Schrodinger Equation. EPJ Web of Conferences, 138, Article ID: 07003. https://doi.org/10.1051/epjconf/201713807003
· Tan, W. P. (2020). No Single Unification Theory of Everything. ArXiv: 2003.04687v1 [physics.gen-ph] 7 Mar 2020.
· Tolman, R. (1974). Relativity, Thermodynamics and Cosmology. Moscow: Sci. Press.
· Weinberg, S. (1992). Dreams of a Final Theory. New York: Vintage.
· Werner, R. F., & Farrelly, T. (2019). Uncertainty from Heisenberg to Today. Foundations of Physics, 49, 460-491. https://doi.org/10.1007/s10701-019-00265-z
· Zaslavsky, G. M. (1984). Stochasticity of Dynamic Systems. Moscow: Sci. Press.
... Less
· Alexeyeva, L. A. (2009). Newton’s Laws for a Biquaternionic Model of Electro-Gravimagnetic Fields, Charges, Currents, and Their Interactions. Journal of Physical Mathematics, 1, Article ID: S090604. https://doi.org/10.4303/jpm/S090604 |
· Baimbetov, N. F., & Ramazanov, T. S. (1998). On the Formation of Ordered Structures in a Nonideal Plasma. FNTP, 1, 490-500. |
· Baumgarten, C. (2017). The Final Theory of Physics—A Tautology? arXiv:1702.00301v1 [physics.gen-ph] 25 Jan 2017. |
· Belinsky, A. V. (2003). Quantum Nonlocality and the Absence of a Priori Values of Measured Quantities in Experiments with Photons. Physics-Uspekhi, 46, 877. https://doi.org/10.1070/PU2003v046n08ABEH001393 |
· Geizenberg, V. (1968). Planck’s Opening and the Basic Philosophical Problems of the Nuclear Theory. UFN, 2, 163-175. |
· Geizenberg, V. (1989). Physics and Philosophy. A Part and Whole. Moscow: Sci. Press. |
· Goldstein, G. (1975). Classical Mechanics. Moscow: Sci. Press. |
· Hooft, G. W. (2017). Free Will in the Theory of Everything. arXiv:1709.02874v1 [quant-ph] 8 Sep. |
· Inwagen, P., & Nozick, R., (2021). The Probabilistic Argument for Why Anything Exists at All Examined. https://thinkingdeeply.medium.com/the-probabilistic-argument-for-why-anything-exists-at-all-examined-van-inwagen-nozick-6fd7f209d11d |
· Knyazeva, E. N., & Kurdyumov, S. P. (2005). Foundations of Synergetic. Synergetic Worldview. Moscow: Kom Kniga. |
· Lanczos, K. (1965). Variational Principles of Mechanics. Moscow: Mir. |
· Landau, L. D., & Lifshits, E. M. (1973). Mechanics. Moscow: Sci. Press. |
· Landau, L. D., & Lifshits, E. M. (1976). Statistical Physics. Moscow: Sci. Press. https://doi.org/10.1007/978-3-642-97294-2 |
· Landau, L. D., & Lifshits, E. M. (1989). Quantum Mechanics. Moscow: Sci. Press. |
· Levis, D. (1986). On the Plurality of Worlds. Oxford: Basil, Blackwell. |
· Loskutov, Mikhailov A.Yu., A.S. (1990). Introduction to Synergetics. Moscow: Sci. Press. |
· Mac Voy, K. (1967). Symmetry Groups in Physics. UFN, 91, 121-150. |
· Milgrom, M. A. (1983). Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. Astrophysics Journal, 1, 365-370. https://doi.org/10.1086/161130 |
· Nelson, D. L., & Cox, M. M. (2017). Lehninger Principles of Biochemistry. Amazon.Com. |
· Nicolis, G., & Prigogine, I. (1990). Exploring Complexity. Moscow: Mir Press. |
· Ramazanov, T. S., Dzhumagulova, K. N., Jumabekov A. N., & Dosbolayev M. K. (2008). Structural Properties of Dusty Plasma in Direct Current and Radio Frequency Gas Discharges. Physics of Plasmas, 15, 053704. https://doi.org/10.1063/1.2918336 |
· Rumer, Yu., & Ryvkin, M. S. (1977). Thermodynamics Stat. Physics and Kinetics. Moscow: Sci. Press. |
· Shirazi, A. N. (2020). Heisenberg’s Equality of in Equivalents Problem. arXiv:2003.06517v1 [physics.hist-ph] |
· Somsikov, V. M. (1983). Solar Terminator and Atmospheric Dynamics. Flma-Ata. Nauka: Alma-Ata. Sci. Press. |
· Somsikov, V. M. (2007). Problems of Evolution of Open Systems. PEOS, 9, 5-16. |
· Somsikov, V. M. (2010). On the Principles of Constructing the Mechanics of Structured Particles Based on the Mechanics of a Material Point. PEOS, 2, 3-17. |
· Somsikov, V. M. (2015). The Dynamical Entropy. International Journal of Sciences, 4, 30-36. https://doi.org/10.18483/ijSci.712 |
· Somsikov, V. M. (2016). Transition from the Mechanics of Material Points to the Mechanics of Structured Particles. Modern Physics Letters B, 4, 1-11. |
· Somsikov, V. M. (2019). The Evolution and Breaking Symmetry in the Physics. In 13th Chaotic Modeling and Simulation International Conference (pp. 777-787). Florence: Springer. |
· Somsikov, V. M. (2020). Deterministic Irreversibility Mechanism and Basic Element of Matter. In C. Skiadas, & Y. Dimotikalis (Eds.), 12th Chaotic Modeling and Simulation International Conference, Springer Proceedings in Complexity (pp. 245-256). Cham: Springer. https://doi.org/10.1007/978-3-030-39515-5_20 |
· Somsikov, V. M. (2021). Foundations of the Physics of Evolution. Almaty: KazNU. |
· Somsikov, V. M., & Azarenko, S. N. (2019). Determinism in Physics and Cognoscibility of a Picture of the World. Open Journal of Philosophy, 9, 265-280. https://doi.org/10.4236/ojpp.2019.93018 |
· Somsikov, V. M., & Troitsky, B. V. (1975). Generation of Disturbances in the Atmosphere When the Solar Terminator Passes through It. Geomagnetism and Aeron, 15, 856-860. |
· Somsikov, V. М. (2017). Extension of the Schrodinger Equation. EPJ Web of Conferences, 138, Article ID: 07003. https://doi.org/10.1051/epjconf/201713807003 |
· Tan, W. P. (2020). No Single Unification Theory of Everything. ArXiv: 2003.04687v1 [physics.gen-ph] 7 Mar 2020. |
· Tolman, R. (1974). Relativity, Thermodynamics and Cosmology. Moscow: Sci. Press. |
· Weinberg, S. (1992). Dreams of a Final Theory. New York: Vintage. |
· Werner, R. F., & Farrelly, T. (2019). Uncertainty from Heisenberg to Today. Foundations of Physics, 49, 460-491. https://doi.org/10.1007/s10701-019-00265-z |
· Zaslavsky, G. M. (1984). Stochasticity of Dynamic Systems. Moscow: Sci. Press. |